ContainerCon Europe 2016

Using seccomp to limit the
kernel attack surface

(© 2016 Michael Kerrisk
man7.org Training and Consulting
http://man7.org/training/
Omkerrisk ~ mtk@man7.org

5 October 2016
Berlin, Germany

Outline

SO~ W

Introduction and history

Seccomp filtering and BPF

Constructing seccomp filters

BPF programs

Further details on seccomp filters
Applications, tools, and further information

Who am |7

o Maintainer of Linux man-pages (since 2004)
o Documents kernel-user-space + C library APls
o 71000 manual pages

o http://www.kernel.org/doc/man-pages/

o API review, testing, and documentation
o API design and design review

o Lots of testing, lots of bug reports, a few kernel patches

o “Day job": programmer, trainer, writer

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 353

Outline

1 Introduction and history

What is seccomp?

o Kernel provides large number of systems calls
o ~400 system calls

o Each system call is a vector for attack against kernel

o Most programs use only small subset of available system calls

o Seccomp = mechanism to restrict system calls that a
process may make

o Reduces attack surface of kernel

o A key component for building application sandboxes

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Introduction and history 5/53

Outline

o History of seccomp
o Basics of seccomp operation

o Creating and installing BPF filters (AKA “seccomp2”)

o Mostly: look at hand-coded BPF filter programs, to gain
fundamental understanding of how seccomp works

o Briefly note some productivity aids for coding BPF
programs

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Introduction and history 6 /53

Introduction and history

o First version in Linux 2.6.12 (2005)
o Filtering enabled via /proc/PID/seccomp

o Writing “1" to file places process (irreversibly) in “strict”
seccomp mode

o Need CONFIG_SECCOMP

o Strict mode: only permitted system calls are read(),
write(), _exit(), and sigreturn()

o Note: open() not included (must open files before entering
strict mode)

o sigreturn() allows for signal handlers
o Other system calls = SIGKILL

o Designed to sandbox compute-bound programs that deal
with untrusted byte code

o Code perhaps exchanged via pre-created pipe or socket

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Introduction and history 7/53

Introduction and history

Linux 2.6.23 (2007):

o /proc/PID/seccomp interface replaced by prctl() operations
o prctl(PR_SET_SECCOMP, arg) modifies caller's seccomp
mode
o SECCOMP_MODE_STRICT: limit syscalls as before
o prctl(PR_GET_SECCOMP) returns seccomp mode:
o 0 = process is not in seccomp mode
o Otherwise?

o SIGKILL (!)
o prctl() is not a permitted system call in “strict” mode

o Who says kernel developers don't have a sense of humor?

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Introduction and history 8 /53

Introduction and history

o Linux 3.5 (2012) adds “filter” mode (AKA "seccomp2")
prctl (PR_SET_SECCOMP, SECCOMP_MODE_FILTER, ...)

o Can control which system calls are permitted,

©

o Control based on system call number and argument values

©

Choice is controlled by user-defined filter—a BPF “program”
o Berkeley Packet Filter (later)
Requires CONFIG_SECCOMP_FILTER

By now used in a range of tools

o E.g., Chrome browser, OpenSSH, vsftpd, systemd, Firefox
0OS, Docker, LXC

©

©

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Introduction and history 9/53

Introduction and history

o Linux 3.8 (2013):
o The joke is getting old...

o New /proc/PID/status Seccomp field exposes process
seccomp mode (as a number)

0 // SECCOMP_MODE_DISABLED
1 // SECCOMP_MODE_STRICT
2 // SECCOMP_MODE_FILTER

o Process can, without fear, read from this file to discover its
own seccomp mode

o But, must have previously obtained a file descriptor...

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Introduction and history 10 / 53

Introduction and history

Linux 3.17 (2014):
o seccomp() system call added
o (Rather than further multiplexing of prctl())
o Provides superset of prctl(2) functionality

o Can synchronize all threads to same filter tree

o Useful, e.g., if some threads created by start-up code before
application has a chance to install filter(s)

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Introduction and history 11 / 53

Outline

2 Seccomp filtering and BPF

Seccomp filtering and BPF

©

Seccomp filtering available since Linux 3.5

©

Allows filtering based on system call number and argument
(register) values

o Pointers are not dereferenced

©

Filters expressed using BPF (Berkeley Packet Filter) syntax

©

Filters installed using seccomp() or prctl()
@ Construct and install BPF filter

@ exec() new program or invoke function inside dynamically
loaded shared library (plug-in)

o Once installed, every syscall triggers execution of filter
o Installed filters can’t be removed

o Filter == declaration that we don't trust subsequently
executed code

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Seccomp filtering and BPF 13 / 53

BPF origins

o BPF originally devised (in 1992) for tcpdump
o Monitoring tool to display packets passing over network
o http://www.tcpdump.org/papers/bpf-usenix93.pdf
o Volume of network traffic is enormous = must filter for
packets of interest
o BPF allows in-kernel selection of packets
o Filtering based on fields in packet header
o Filtering in kernel more efficient than filtering in user space
o Unwanted packet are discarded early

o = Avoids passing every packet over kernel-user-space
boundary

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Seccomp filtering and BPF 14 / 53

BPF virtual machine

o BPF defines a virtual machine (VM) that can be
implemented inside kernel
o VM characteristics:

o Simple instruction set
o Small set of instructions

o All instructions are same size
o Implementation is simple and fast

o Only branch-forward instructions
o Programs are directed acyclic graphs (DAGs)

o Easy to verify validity /safety of programs
o Program completion is guaranteed (DAGs)

o Simple instruction set = can verify opcodes and arguments
o Can detect dead code
o Can verify that program completes via a “return” instruction

o BPF filter programs are limited to 4096 instructions

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Seccomp filtering and BPF 15 / 53

Generalizing BPF

o BPF originally designed to work with network packet headers
o Seccomp 2 developers realized BPF could be generalized to
solve different problem: filtering of system calls
o Same basic task: test-and-branch processing based on
content of a small set of memory locations
o Further generalization (“extended BPF"; see ebpf(2)) is
ongoing
o Linux 3.18: adding filters to kernel tracepoints
o Linux 3.19: adding filters to raw sockets
o Linux 4.4: filtering of perf events

o Linux 4.5: use cBPF or eBPF program to distribute packets
to SO_REUSEPORT group of sockets

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Seccomp filtering and BPF 16 / 53

Outline

3 Constructing seccomp filters

Basic features of BPF virtual machine

o Accumulator register
o Data area (data to be operated on)

o In seccomp context: data area describes system call
o Implicit program counter

o (Recall: all instructions are same size)

o Instructions contained in structure of this form:

struct sock_filter { /* Filter block */

__ul6é code; /% Filter code (opcode)*/
__u8 jt; /% Jump true */
__u8 jf; /* Jump false */
__u32 k; /% Generic multiuse field

(operand) */
};

o See <linux/filter.h> and <linux/bpf_common.h>

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Constructing seccomp filters 18 / 53

BPF instruction set

Instruction set includes:
o Load instructions

Store instructions

©

©

Jump instructions

©

Arithmetic/logic instructions
o ADD, SUB, MUL, DIV, MOD, NEG

o OR, AND, XOR, LSH, RSH

o Return instructions
o Terminate filter processing

o Report a status telling kernel what to do with syscall

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Constructing seccomp filters 19 / 53

BPF jump instructions

o Conditional and unconditional jump instructions provided
o Conditional jump instructions consist of

o Opcode specifying condition to be tested

o Value to test against

o Two jump targets
o jt: target if condition is true

o jf: target if condition is false
o Conditional jump instructions:
o JEQ: jump if equal

©

JGT: jump if greater

©

JGE: jump if greater or equal
o JSET: bit-wise AND + jump if nonzero result
jf target = no need for JNE, JLT, JLE, and JCLEAR

©

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Constructing seccomp filters 20 / 53

BPF jump instructions

o Targets are expressed as relative offsets in instruction list
o 0 == no jump (execute next instruction)

o jt and jf are 8 bits = 255 maximum offset for conditional
jumps

o Unconditional JA (“jump always”) uses k as offset, allowing
much larger jumps

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Constructing seccomp filters 21 /53

Seccomp BPF data area

o Seccomp provides data describing syscall to filter program

o Buffer is read-only

o Format (expressed as C struct):

struct seccomp_data {

int nr; /*
__u32 arch; / *
__u64 instruction_pointer; /*
__u64 args|[6]; / *

System call number */
AUDIT_ARCH_* walue */
CPU IP #*/

System call arguments */

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Constructing seccomp filters

22 / 53

Seccomp BPF data area

struct seccomp_data {

int nr; /* System call number */
__u32 arch; /* AUDIT_ARCH_* walue */
__ub4 instruction_pointer; /* CPU IP */

__u64 args|[6]; /* System call arguments */

o nr. system call number (architecture-dependent)

o arch: identifies architecture

o Constants defined in <linux/audit.h>

o AUDIT_ARCH_X86_64, AUDIT_ARCH_I386,
AUDIT_ARCH_ARM, etc.

o instruction_pointer: CPU instruction pointer

o args: system call arguments
o System calls have maximum of six arguments

o Number of elements used depends on system call

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Constructing seccomp filters 23 /53

Building BPF instructions

o Obviously, one can code BPF instructions numerically by
hand

o But, header files define symbolic constants and convenience
macros (BPF_STMT (), BPF_JUMP()) to ease the task

#define BPF_STMT (code, k) \

{ (unsigned short)(code), 0, 0, k }
#define BPF_JUMP(code, k, jt, jf) \

{ (unsigned short)(code), jt, jf, k }

o (Macros just plug values together to form structure)

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Constructing seccomp filters 24 / 53

Building BPF instructions: examples

o Load architecture number into accumulator

BPF_

STMT (BPF_LD | BPF_W | BPF_ABS,
(offsetof (struct seccomp_data, arch)))

o Opcode here is constructed by ORing three values together:

Qo

Qo

Qo

BPF_LD: load
BPF_W: operand size is a word

BPF_ABS: address mode specifying that source of load is
data area (containing system call data)

See <linux/bpf_common.h> for definitions of opcode
constants

o Operand is architecture field of data area

o

offsetof () yields byte offset of a field in a structure

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Constructing seccomp filters 25 /53

Building BPF instructions: examples

o Test value in accumulator

BPF_JUMP (BPF_JMP | BPF_JEQ | BPF_K,
AUDIT_ARCH_X86_64, 1, 0)

©

BPF_JMP | BPF_JEQ: jump with test on equality

©

BPF_K: value to test against is in generic multiuse field (k)
o k contains value AUDIT_ARCH_X86_64

©

jt value is 1, meaning skip one instruction if test is true

©

jf value is 0, meaning skip zero instructions if test is false
o l.e., continue execution at following instruction

o Return value that causes kernel to kill process with SIGSYS

BPF_STMT (BPF_RET | BPF_K, SECCOMP_RET_KILL)

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Constructing seccomp filters 26 / 53

Checking the architecture

o Checking architecture value should be first step in any BPF
program

o Architecture may support multiple system call conventions
o E.g. x86 hardware supports x86-64 and i386

o System call numbers may differ or overlap

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Constructing seccomp filters 27 / 53

Filter return value

o Once a filter is installed, each system call is tested against
filter

o Seccomp filter must return a value to kernel indicating
whether system call is permitted
o Otherwise EINVAL when attempting to install filter
o Return value is 32 bits, in two parts:

o Most significant 16 bits (SECCOMP_RET_ACTION mask)
specify an action to kernel

o Least significant 16 bits (SECCOMP_RET_DATA mask) specify
“data” for return value

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Constructing seccomp filters 28 / 53

Filter return action

Filter return action component is one of
o SECCOMP_RET_ALLOW: system call is executed

o SECCOMP_RET _KILL: process is immediately terminated
o Terminated as though process had been killed with SIGSYS

SECCOMP_RET_ERRNO: return an error from system call
o System call is not executed

o Value in SECCOMP_RET_DATA is returned in errno

SECCOMP_RET_TRACE: attempt to notify ptrace() tracer
o Gives tracing process a chance to assume control

©

©

o See seccomp(2)

o SECCOMP_RET_TRAP: process is sent SIGSYS signal
o Can catch this signal; see seccomp(2) for more details

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Constructing seccomp filters 29 /53

Outline

4 BPF programs

Installing a BPF program

o A process installs a filter for itself using one of:
o seccomp(SECCOMP_SET_MODE_FILTER, flags, &fprog)
o Only since Linux 3.17

o prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER,
&fprog)

o &fprogis a pointer to a BPF program:

struct sock_fprog {
unsigned short len; /* Number of instructions */
struct sock_filter xfilter;
/* Pointer to program
(array of instructions) */

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 BPF programs 31 /53

Installing a BPF program

To install a filter, one of the following must be true:

o Caller is privileged (has CAP_SYS_ADMIN in its user NS)

o Caller has to set the no_new_privs process attribute:

prctl (PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ‘

o Causes set-UID/set-GID bit / file capabilities to be ignored
on subsequent execve() calls
o Once set, no_new_privs can't be unset

o Prevents possibility of attacker starting privileged program
and manipulating it to misbehave using a seccomp filter

o ! no_new_privs && ! CAP_SYS_ADMIN =
seccomp()/ prctl(PR_SET_SECCOMP) fails with EACCES

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 BPF programs 32 /53

Example: seccomp/seccomp_deny_open.c

int main(int argc, char xxargv) {
prctl (PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);

install_filter ();
open("/tmp/a", O_RDONLY);

printf ("We shouldn’t see this message\n");
exit (EXIT_SUCCESS);

QOO WN -

[y

}

Program installs a filter that prevents open() being called, and
then calls open()

o Set no_new_privs bit
o Install seccomp filter

o Call open()

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 BPF programs 33 /53

Example: seccomp/seccomp_deny_open.c

static void imnstall_filter(void) {
struct sock_filter filter[] = {
BPF_STMT (BPF_LD | BPF_W | BPF_ABS,
(offsetof (struct seccomp_data, arch))),
BPF_JUMP (BPF_JMP | BPF_JEQ | BPF_K,
AUDIT_ARCH_X86_64, 1, 0),
BPF_STMT (BPF_RET | BPF_K, SECCOMP_RET_KILL),

OO O WN =

o Define and initialize array (of structs) containing BPF filter
program

o Load architecture into accumulator

o Test if architecture value matches AUDIT_ARCH_X86_64

o True: jump forward one instruction (i.e., skip next
instruction)

o False: skip no instructions

o Kill process on architecture mismatch

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 BPF programs 34 /53

Example:

seccomp/seccomp_deny_open.c

};

BPF_

BPF _

1 BPF _
2
3
4 BPF_
5
6
7
8
9

STMT (BPF_LD | BPF_W | BPF_ABS,
(offsetof (struct seccomp_data, nr))),

JUMP (BPF_JMP | BPF_JEQ | BPF_K, __NR_open,
1, 0),
STMT (BPF_RET | BPF_K, SECCOMP_RET_ALLOW),

STMT (BPF_RET | BPF_K, SECCOMP_RET_KILL)

o Remainder of filter program

o Load system call number into accumulator

o Test if system call number matches __NR_open
o True: advance one instruction = kill process

o False: advance 0 instructions = allow system call

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 BPF programs

35 /53

Example: seccomp/seccomp_deny_open.c

1 struct sock_fprog prog = {

2 .len = (unsigned short) (sizeof(filter) /

3 sizeof (filter [0])),
4 .filter = filter,

5 };

6

7 seccomp (SECCOMP_SET_MODE_FILTER, O, &prog);

8

o Construct argument for seccomp()

o Install filter

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 BPF programs 36 / 53

Example: seccomp/seccomp_deny_open.c

Upon running the program, we see:

$./seccomp_deny_open
Bad system call # Message printed by shell
$ echo $7 # Display exit status of last command

159

o “Bad system call” indicates process was killed by SIGSYS

o Exit status of 159 (== 128 + 31) also indicates termination
as though killed by SIGSYS
o Exit status of process killed by signal is 128 + signum

o SIGSYS is signal number 31 on this architecture

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 BPF programs 37 /53

Example: seccomp/seccomp_control open.c

o A more sophisticated example

o Filter based on flags argument of open()
o O_CREAT specified = kill process

o O_WRONLY or O_RDWR specified = cause open() to fail with
ENOTSUP error

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 BPF programs 38 /53

Example: seccomp/seccomp_control open.c

struct sock_filter filter[] = {
BPF_STMT (BPF_LD | BPF_W | BPF_ABS,
(offsetof (struct seccomp_data, arch))),
BPF_JUMP (BPF_JMP | BPF_JEQ | BPF_K,
AUDIT_ARCH_X86_64, 1, 0),
BPF_STMT (BPF_RET | BPF_K, SECCOMP_RET_KILL),

BPF_STMT (BPF_LD | BPF_W | BPF_ABS,
(offsetof (struct seccomp_data, nr))),

BPF_JUMP (BPF_JMP | BPF_JEQ | BPF_K, __NR_open,
BPF_STMT (BPF_RET | BPF_K, SECCOMP_RET_ALLOW),

1,

0),

o Load architecture and test for expected value
o Load system call number

o Test if system call number is __NR_open
o True: skip next instruction

o False: skip 0 instructions = permit all other syscalls

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 BPF programs

39 /53

Example: seccomp/seccomp_control open.c

BPF_STMT (BPF_LD | BPF_W | BPF_ABS,

BPF_JUMP (BPF_JMP | BPF_JSET | BPF_K, O_CREAT,
BPF_STMT (BPF_RET | BPF_K, SECCOMP_RET_KILL),

(offsetof (struct seccomp_data, args[1]))),

o Load second argument of open() (flags)
o Test if O_CREAT bit is set in flags
o True: skip 0 instructions = kill process

o False: skip 1 instruction

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 BPF programs

40/ 53

Example: seccomp/seccomp_control open.c

BPF_JUMP (BPF_JMP | BPF_JSET | BPF_K,
O_WRONLY | O_RDWR, 0, 1),
BPF_STMT (BPF_RET | BPF_K,
SECCOMP_RET_ERRNO |
(ENOTSUP & SECCOMP_RET_DATA)),

BPF_STMT (BPF_RET | BPF_K, SECCOMP_RET_ALLOW)
};

o Test if 0_WRONLY or O_RDWR are set in flags
o True: cause open() to fail with ENOTSUP error in errno

o False: allow open() to proceed

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 BPF programs 41 /53

Example: seccomp/seccomp_control open.c

int main(int argc, char **xargv) {
prctl (PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
install_filter ();

if (open("/tmp/a", O_RDONLY) == -1)
perror ("openl");

if (open("/tmp/a", O_WRONLY) == -1)
perror ("open2");

if (open("/tmp/a", O_RDWR) == -1)

perror ("open3");
if (open("/tmp/a", O_CREAT | O_RDWR, 0600)
perror ("open4");

-1)

exit (EXIT_SUCCESS);

o Test open() calls with various flags

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 BPF programs 42 /53

Example: seccomp/seccomp_control open.c

$./seccomp_control_open
open2: Operation not supported
open3: Operation not supported
Bad system call

$ echo $7

159

o First open() succeeded
o Second and third open() calls failed
o Kernel produced ENOTSUP error for call

o Fourth open() call caused process to be killed

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 BPF programs 43 /53

Outline

5 Further details on seccomp filters

Installing multiple filters

o If existing filters permit prctl() or seccomp(), further filters
can be installed

o All filters are always executed, in reverse order of
registration

o Each filter yields a return value
o Value returned to kernel is first seen action of highest
priority (along with accompanying data)
o SECCOMP_RET_KILL (highest priority)
SECCOMP_RET_TRAP
o SECCOMP_RET_ERRNO
o SECCOMP_RET_TRACE
SECCOMP_RET_ALLOW (lowest priority)

©

©

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Further details on seccomp filters 45 /53

fork() and execve() semantics

o If seccomp filters permit fork() or clone(), then child inherits
parents filters

o If seccomp filters permit execve(), then filters are preserved
across execve()

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Further details on seccomp filters 46 / 53

Cost of filtering, construction of filters

o Installed BPF filter(s) are executed for every system call
o = there’s a performance cost
o Example on x86-64:
o Use our “deny open” seccomp filter
o Requires 6 BPF instructions / permitted syscall
o Call getppid() repeatedly (one of cheapest syscalls)
o +25% execution time (with JIT compiler disabled)
o (Looks relatively high because getppid() is a cheap syscall)
o Obuviously, order of filtering rules can affect performance
o Construct filters so that most common cases yield shortest
execution paths

o If handling many different system calls, binary chop
techniques can give O(logN) performance

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Further details on seccomp filters 47 / 53

Outline

6 Applications, tools, and further information

Applications

Possible applications:
o Building sandboxed environments
o Whitelisting usually safer than blacklisting
o Default treatment: block all system calls
o Then allow only a limited set of syscall / argument
combinations

o Various examples mentioned earlier
o Failure-mode testing
o Place application in environment where unusual /
unexpected failures occur
o Blacklist certain syscalls / argument combinations to
generate failures

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Applications, tools, and further information 49 / 53

Tools: libseccomp

o High-level API for kernel creating seccomp filters
o https://github.com/seccomp/libseccomp

o Initial release: 2012

o Simplifies various aspects of building filters

o Eliminates tedious/error-prone tasks such as changing
branch instruction counts when instructions are inserted

o Abstract architecture-dependent details out of filter creation

o Can output generated code in binary (for seccomp filtering)
or human-readable form (“pseudofilter code”)

o Don't have full control of generated code, but can give hints
about which system calls to prioritize in generated code

o http://lwn.net/Articles/494252/

o Fully documented with man pages that contain examples (!)

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Applications, tools, and further information 50 / 53

Other tools

o In-kernel JIT (just-in-time) compiler
o Compiles BPF binary to native machine code at load time
o Execution speed up of 2x to 3x (or better, in some cases)
o Disabled by default; enable by writing “1" to
/proc/sys/net/core/bpf_jit_enable

o See bpf(2) man page

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Applications, tools, and further information 51 /53

Resources

o Kernel source files:
Documentation/prctl/seccomp_filter.txt,
Documentation/networking/filter.txt

o http://outflux.net/teach-seccomp/
o Shows handy trick for discovering which of an application’s
system calls don't pass filtering
o seccomp(2) man page

o “Seccomp sandboxes and memcached example”
0 blog.viraptor.info/post/seccomp-sandboxes-and-memcached-example-part-1

o blog.viraptor.info/post/seccomp-sandboxes-and-memcached-example-part-2

o https://lwn.net/Articles/656307/
o Write-up of a version of this presentation...

Seccomp: limiting the kernel attack surface ContainerCon.eu 2016 Applications, tools, and further information 52 /53

Thanks!

mtk@man7.org @mbkerrisk
Slides at http://man7.org/conf/

Linux System Programming,
System Programming for Linux Containers,
and other training at http://man7.org/training/
The Linux Programming Interface, http://man7.org/tlpi/

THE LINUX
PROGRAMMING
INTERFACE

	Seccomp: limiting the kernel attack surface
	Introduction and history
	Seccomp filtering and BPF
	Constructing seccomp filters
	BPF programs
	Further details on seccomp filters
	Applications, tools, and further information

