
Linux Capabilities and Namespaces

User Namespaces

Michael Kerrisk, man7.org © 2024

January 2024

mtk@man7.org

Outline Rev: # c08bf53c67aa

10 User Namespaces 10-1
10.1 Overview of user namespaces 10-3
10.2 Creating and joining a user namespace 10-9
10.3 User namespaces: UID and GID mappings 10-17
10.4 User namespaces, execve(), and user ID 0 10-31
10.5 Accessing files; file-related capabilities 10-48
10.6 Security issues 10-57
10.7 Use cases 10-64
10.8 Combining user namespaces with other namespaces 10-69



Outline

10 User Namespaces 10-1
10.1 Overview of user namespaces 10-3
10.2 Creating and joining a user namespace 10-9
10.3 User namespaces: UID and GID mappings 10-17
10.4 User namespaces, execve(), and user ID 0 10-31
10.5 Accessing files; file-related capabilities 10-48
10.6 Security issues 10-57
10.7 Use cases 10-64
10.8 Combining user namespaces with other namespaces 10-69

Preamble

For even more detail than presented here, see my articles:

Namespaces in operation, part 5: user namespaces,
https://lwn.net/Articles/532593/

Namespaces in operation, part 6: more on user namespaces,
https://lwn.net/Articles/540087/

" See my notes in comments section for some updates

And user_namespaces(7) manual page

Linux Capabilities and Namespaces ©2024 M. Kerrisk User Namespaces 10-4 §10.1

https://lwn.net/Articles/532593/ 
https://lwn.net/Articles/540087/


Introduction

Milestone release: Linux 3.8 (Feb 2013)

User NSs can now be created by unprivileged users...

Allow per-namespace mappings of UIDs and GIDs

I.e., process’s UIDs and GIDs inside NS may be different
from IDs outside NS

Interesting use case: process has nonzero UID outside NS,
and UID of 0 inside NS

⇒ Process has root privileges for operations inside user NS

We will learn what this means...

Linux Capabilities and Namespaces ©2024 M. Kerrisk User Namespaces 10-5 §10.1

Relationships between user namespaces

User NSs have a hierarchical relationship:

A user NS can have 0 or more child user NSs

Each user NS has parent NS, going back to initial user NS

Initial user NS == sole user NS that exists at boot time

Maximum nesting depth for user NSs is 32

(To prevent extremely long chains of descent, since these
need to be traversed)

Parent of a user NS == user NS of process that created
this user NS using clone() or unshare()

Parental relationship determines some rules about operations
that can be performed on a (child) user NS (later...)

Linux Capabilities and Namespaces ©2024 M. Kerrisk User Namespaces 10-6 §10.1



“Root privileges inside a user NS”

What does “root privileges in a user NS” mean?

We’ve already seen that:

There are a number of NS types

Each NS type governs some global resource(s); e.g.:

UTS: hostname, NIS domain name

Mount: set of mounts

Network: IP routing tables, port numbers, /proc/net, ...

What we will see is that:
There is an ownership relationship between user NSs and
non-user NSs

I.e., each non-user NS is “owned” by a particular user NS

“root privileges in a user NS” == root privileges on (only)
resources governed by non-user NSs owned by this user NS

And on resources associated with descendant user NSs...

Linux Capabilities and Namespaces ©2024 M. Kerrisk User Namespaces 10-7 §10.1

User namespaces “govern” other namespace types

Initial user namespace

creator eUID: 0

Initial network

namespace

Child user namespace

creator eUID: 1000

is ow
ned byis 

ch
ild

 o
f

Initial UTS

namespace

is owned by

Second UTS

namespace

is owned by

Process X

eUID inside NS: 0

eUID in outer NS: 1000

capabilities: =ep

ismember of
is 

member o
f

is member of

Understanding this picture is our ultimate goal...

Linux Capabilities and Namespaces ©2024 M. Kerrisk User Namespaces 10-8 §10.1



Outline

10 User Namespaces 10-1
10.1 Overview of user namespaces 10-3
10.2 Creating and joining a user namespace 10-9
10.3 User namespaces: UID and GID mappings 10-17
10.4 User namespaces, execve(), and user ID 0 10-31
10.5 Accessing files; file-related capabilities 10-48
10.6 Security issues 10-57
10.7 Use cases 10-64
10.8 Combining user namespaces with other namespaces 10-69

Creating and joining a user NS

New user NS is created with CLONE_NEWUSER flag

clone() ⇒ child is made a member of new user NS

unshare() ⇒ caller is made a member of new user NS

Can join an existing user NS using setns()
Process must have CAP_SYS_ADMIN capability in target NS

(The capability requirement will become clearer later)

Linux Capabilities and Namespaces ©2024 M. Kerrisk User Namespaces 10-10 §10.2



User namespaces and capabilities

A process gains a full set of permitted and effective
capabilities in the new/target user NS when:

It is the child of clone() that creates a new user NS

It creates and joins a new user NS using unshare()

It joins an existing user NS using setns()

But, process has no capabilities in parent/previous user NS
" Even if it was root in that NS!

Linux Capabilities and Namespaces ©2024 M. Kerrisk User Namespaces 10-11 §10.2

Example: namespaces/demo_userns.c

./demo_userns

(Very) simple user NS demonstration program

Uses clone() to create child in new user NS

Child displays its UID, GID, and capabilities

Linux Capabilities and Namespaces ©2024 M. Kerrisk User Namespaces 10-12 §10.2



Example: namespaces/demo_userns.c

#define STACK_SIZE (1024 * 1024)

int main(int argc, char *argv[]) {
char *stack = mmap(..., STACK_SIZE); /* Allocate memory for

child's stack */
pid_t pid = clone(childFunc, stack + STACK_SIZE,

CLONE_NEWUSER | SIGCHLD, argv[1]);
printf("PID of child: %ld\n", (long) pid);

munmap(stack, STACK_SIZE); /* Deallocate stack */

waitpid(pid, NULL, 0);
exit(EXIT_SUCCESS);

}

Use clone() to create a child in a new user NS

Child will execute childFunc(), with argument argv[1]

Printing PID of child is useful for some demos...

Wait for child to terminate

Linux Capabilities and Namespaces ©2024 M. Kerrisk User Namespaces 10-13 §10.2

Example: namespaces/demo_userns.c

static int childFunc(void *arg) {
for (;;) {

printf("eUID = %ld; eGID = %ld; ",
(long) geteuid(), (long) getegid());

cap_t caps = cap_get_proc();
char *str = cap_to_text(caps, NULL);
printf("capabilities: %s\n", str);
cap_free(caps);
cap_free(str);

if (arg == NULL)
break;

sleep(5);
}
return 0;

}

Display PID, effective UID + GID, and capabilities

If arg (argv[1]) was NULL, break out of loop

Otherwise, redisplay IDs and capabilities every 5 seconds

Linux Capabilities and Namespaces ©2024 M. Kerrisk User Namespaces 10-14 §10.2



Example: namespaces/demo_userns.c

$ id -u # Display effective UID of shell process
1000
$ id -g # Display effective GID of shell process
1000
$ ./demo_userns
eUID = 65534; eGID = 65534; capabilities: =ep

Upon running the program, we’ll see something like the above

Program was run from unprivileged user account

=ep means child process has a full set of permitted and
effective capabilities

Linux Capabilities and Namespaces ©2024 M. Kerrisk User Namespaces 10-15 §10.2

Example: namespaces/demo_userns.c

$ id -u # Display effective UID of shell process
1000
$ id -g # Display effective GID of shell process
1000
$ ./demo_userns
eUID = 65534; eGID = 65534; capabilities: =ep

Displayed UID and GID are “strange”

System calls such as geteuid() and getegid() always return
credentials as they appear inside user NS where caller resides

But, no mapping has yet been defined to map IDs outside
user NS to IDs inside NS

⇒ when a UID is unmapped, system calls return value in
/proc/sys/kernel/overflowuid

Unmapped GIDs ⇒ /proc/sys/kernel/overflowgid

Default value, 65534, chosen to be same as NFS nobody ID

Linux Capabilities and Namespaces ©2024 M. Kerrisk User Namespaces 10-16 §10.2



Outline

10 User Namespaces 10-1
10.1 Overview of user namespaces 10-3
10.2 Creating and joining a user namespace 10-9
10.3 User namespaces: UID and GID mappings 10-17
10.4 User namespaces, execve(), and user ID 0 10-31
10.5 Accessing files; file-related capabilities 10-48
10.6 Security issues 10-57
10.7 Use cases 10-64
10.8 Combining user namespaces with other namespaces 10-69

UID and GID mappings

One of first steps after creating a user NS is to define UID
and GID mapping for NS

Mappings for a user NS are defined by writing to 2 files:
/proc/PID/uid_map and /proc/PID/gid_map

Each process in user NS has these files; writing to files of
any process in the user NS suffices

Initially, these files are empty

Linux Capabilities and Namespaces ©2024 M. Kerrisk User Namespaces 10-18 §10.3



UID and GID mappings

Records written to/read from uid_map and gid_map have
this form:

ID-inside-ns ID-outside-ns length

ID-inside-ns and length define range of IDs inside user NS
that are to be mapped

ID-outside-ns defines start of corresponding mapped range
in “outside” user NS

E.g., following says that IDs 0...9 inside user NS map to IDs
1000...1009 in outside user NS

0 1000 10

" To properly understand ID-outside-ns, we must first look
at a picture

Linux Capabilities and Namespaces ©2024 M. Kerrisk User Namespaces 10-19 §10.3

Understanding UID and GID maps

Initial user NS (NS 0)

1000 1009 1014 1020 1029

Child NS 2

Map: 50 1000 15

50 64

Child NS 1

Map: 0 1000 10

0 9

Child NS 4

Map: 0 1020 10

0 9

Child NS 3

Map: 10 50 10

0 9

10 19

”What does ID X in namespace Y map to in namespace Z?” means
“what is the equivalent ID (if any) in namespace Z?”

What does ID 5 in NS 1 map to in the initial NS (NS 0)?

What does ID 5 in NS 1 map to in NS 2 and NS 3?

What does ID 15 in NS 3 map to in NS 2 and NS 1?

What does the UID 0 in NS 4 map to in NS 1?

Linux Capabilities and Namespaces ©2024 M. Kerrisk User Namespaces 10-20 §10.3



Interpretation of ID-outside-ns

" Interpretation of ID-outside-ns depends on whether
process opening uid_map/gid_map is in same NS as PID

NB: contents of uid_map/gid_map are generated on the fly
by the kernel, and can be different in different processes

If “opener” and PID are in same user NS:

ID-outside-ns interpreted as ID in parent user NS of PID

Common case: process is writing its own mapping file

If “opener” and PID are in different user NSs:

ID-outside-ns interpreted as ID in opener’s user NS

Equivalent to previous case, if “opener” is (parent) process
that created user NS using clone()

" Only ID-outside-ns is interpreted; ID-inside-ns and length
are always treated literally

Linux Capabilities and Namespaces ©2024 M. Kerrisk User Namespaces 10-21 §10.3

Quiz: reading /proc/PID/uid_map

Initial user NS

Child user NS

uid_map: 200 1000 1

Contains PID 2366

Child user NS

uid_map: 0 1000 1

Contains PID 2571

If PID 2366 reads /proc/2571/uid_map, what should it see?

0 200 1

If PID 2571 reads /proc/2366/uid_map, what should it see?

200 0 1

Linux Capabilities and Namespaces ©2024 M. Kerrisk User Namespaces 10-22 §10.3



Example: updating a mapping file

Let’s run demo_userns with an argument, so it loops:

$ id -u # Display user ID of shell
1000
$ id -G # Display group IDs of shell
1000 10
$ ./demo_userns x
PID of child: 2810
eUID = 65534; eGID = 65534; capabilities: =ep

Then we switch to another terminal window (i.e., a shell
process in parent user NS), and write a UID mapping:

echo '0 1000 1' > /proc/2810/uid_map

Returning to window where we ran demo_userns, we see:

eUID = 0; eGID = 65534; capabilities: =ep

Linux Capabilities and Namespaces ©2024 M. Kerrisk User Namespaces 10-23 §10.3

Example: updating a mapping file

But, if we go back to second terminal window, to create a
GID mapping, we encounter a problem:

$ echo '0 1000 1' > /proc/2810/gid_map
bash: echo: write error: Operation not permitted

There are (many) rules governing updates to mapping files

Inside the new user NS, user is getting full capabilities

It is critical that capabilities can’t leak

I.e., user must not get more privileges than they would
otherwise have outside the NS

Linux Capabilities and Namespaces ©2024 M. Kerrisk User Namespaces 10-24 §10.3



Validity requirements for updating mapping files

If any of these rules are violated, write() fails with EINVAL:

There is a limit on the number of lines that may be written
Linux 4.14 and earlier: between 1 and 5 lines

An arbitrarily chosen limit that was expected to suffice

5 * 12-byte records: small enough to fit in a 64B cache line

Since Linux 4.15 (2017): between 1 and 340 lines

The limit of 5 had become an issue for some use cases

340 * 12-byte records: can fit in 4KiB

Each line contains 3 valid numbers, with length > 0, and a
newline terminator

The ID ranges specified by the lines may not overlap

(Because that would make IDs ambiguous)

Linux Capabilities and Namespaces ©2024 M. Kerrisk User Namespaces 10-25 §10.3

Permission rules for updating mapping files

If any of these “permission” rules are violated when updating
uid_map and gid_map files, write() fails with EPERM:

Each map may be updated only once

Writer must be in target user NS or in parent user NS

The mapped IDs must have a mapping in parent user NS

Writer must have following capability in target user NS

CAP_SETUID for uid_map

CAP_SETGID for gid_map

Linux Capabilities and Namespaces ©2024 M. Kerrisk User Namespaces 10-26 §10.3



Permission rules for updating mapping files

As well as preceding rules, one of the following also applies:

Either: writer has CAP_SETUID (for uid_map) or
CAP_SETGID (for gid_map) capability in parent user NS:

⇒ no further restrictions apply (more than one line may be
written, and arbitrary UIDs/GIDs may be mapped)

Or: otherwise, all of the following restrictions apply:

Only a single line may be written to uid_map (gid_map)

That line maps only the writer’s eUID (eGID)

Usual case: we are writing a mapping for eUID/eGID of
process that created the NS

eUID of writer must match eUID of creator of NS

(eUID restriction also applies for gid_map)

For gid_map only: corresponding /proc/PID/setgroups
file must have been previously updated with string “deny”

We revisit reasons later

Linux Capabilities and Namespaces ©2024 M. Kerrisk User Namespaces 10-27 §10.3

Example: updating a mapping file

Going back to our earlier example:

$ echo '0 1000 1' > /proc/2810/gid_map
bash: echo: write error: Operation not permitted
$ echo 'deny' > /proc/2810/setgroups
$ echo '0 1000 1' > /proc/2810/gid_map
$ cat /proc/2810/gid_map

0 1000 1

After writing “deny” to /proc/PID/setgroups file, we can
update gid_map

Upon returning to window running demo_userns, we see:

eUID = 0; eGID = 0; capabilities: =ep

Linux Capabilities and Namespaces ©2024 M. Kerrisk User Namespaces 10-28 §10.3



Exercises

1 Try replicating the steps shown earlier on your system:

Use the id(1) command to discover your UID and GID; you will need this
information for a later step.

Run the namespaces/demo_userns.c program with an argument (any
string), so it loops. Verify that the child process has all capabilities.

Inspect (readlink(1)) the /proc/PID/ns/user file for the process running
demo_userns and compare it with the /proc/PID/ns/user for a shell
running in the initial user namespace. You should find that the two processes
are in different user namespaces.

From a shell in the initial user NS, define UID and GID maps for the process
running demo_userns (i.e., for the UID and GID that you discovered in the
first step). Map the ID-outside-ns value for both IDs to IDs of your choice in
the inner NS.

This step will involve writing to the uid_map, setgroups, and
gid_map files in the /proc/PID directory.

Verify that the UID and GID displayed by the looping demo_userns program
have changed.

[Further exercises follow on the next slide]

Linux Capabilities and Namespaces ©2024 M. Kerrisk User Namespaces 10-29 §10.3

Exercises

2 What are the contents of the UID and GID maps of a process in the initial user
namespace?

$ cat /proc/1/uid_map

3 The script namespaces/show_non_init_uid_maps.sh shows the processes on the
system that have a UID map that is different from the init process (PID 1).
Included in the output of this script are the capabilities of each processes. Run this
script to see examples of such processes. As well as noting the UID maps that these
processes have, observe the capabilities of these processes.

Linux Capabilities and Namespaces ©2024 M. Kerrisk User Namespaces 10-30 §10.3


