Do manual pages matter?

Michael Kerrisk

linux.conf.au, Sydney, 17 January 2007

www . kernel .org/pub/linux/docs/manpages
mtk-manpages@gmx.net

Outline

Background

Man pages: a counter-argument

Man pages matter for kernel developers
Problems maintaining man pages

How to help

The man-pages project

e Project started 1993

« Documents Linux kernel-userland API...
and (GNU) C library API

Sections 2, 3, 4, 5, and 7 of manual pages
» Target audience: userland programmers...
and kernel developers

Contents of man-pages

e As at man-pages-2.44-
— ~800 man pages (== ~2000 printed pages)
— 2: syscalls
— 3: library functions (g/ibc)

— 4: devices Proportion of source lines (and
— 5: f||e formats number of source files)

— 7: overviews, etc

mman2 (224)
m man3 (465)
O man4 (25)
m man5 (31)
mman7 (61)

Background

Man pages: a counter-argument

Man pages matter for kernel developers
Problems maintaining man pages

How to help

“Documentation is fantasy: you have
to read the source code to know
the truth.”

Time!

e The kernel is big:
— 2.6.19 kernel source (*.[chS]) is 7.3M lines

» and constantly changing:
— Typical Linux 2.6.x diff-u patch > 1M lines

Reading the source doesn't cut it

Reading the source gives the “right” answer

but... too slow (and hard, especially for
userland programmers)

We just don't have the time...

We need summaries of the code

« Understanding of code must be mediated by
natural language summaries
e Discussions
— oral + email
— Take place during development
— but... not so useful later
e Documentation
— most useful form of summary for later

Man pages do matter!

Background

Man pages: a counter-argument

Man pages matter for kernel developers
Problems maintaining man pages

How to help

Why man pages matter for kernel
developers

Publicity

Identifying bugs

Better testing (reducing # of released bugs)
Better interface design

Better interface consistency

Identifying bugs

« Software is an /implementation of an intention

e bug == intention — implementation

« Without documentation, how do we know
whether implementation matches intention?

* And how can we test?

Testing

* Problem: too many bugs in released
interfaces

* Why? Insufficient testing before release

Documentation and Testing

« Documentation can help reduce bugs
« Evidence: the process can work in reverse...

Testing — example 1

inotify

« File change notification API

* Appeared in kernel 2.6.13

e 2.6.16-rc timeframe, | wrote /notify(7)

e Testing: IN_ONESHOT had never worked
* Bug reported; fixed for 2.6.16

Testing — example 2

splice()
« transfer data between file descriptors without
going through user space

e Appeared in kernel 2.6.17
» Simple test programs easily caused hangs
* Bug reported; fixed for 2.6.18

Testing: conclusions

Documentation goes hand in hand with
testing

Documentation broadens range of testers
Testers can determine if implementation ==
intention

Good, early documentation > more & earlier
testing > fewer released bugs

Interface design

e It's hard to design a good programming
interfaces

« Getting design wrong is painful...
— Using interface is difficult, and bug-prone
— Difficult/impossible to change design

When interface design goes wrong

anotify (kernel 2.4; file change notification)
* Many problems in interface design

* Problems led to replacement by /inotify

e But... is the problem the developer(s)?

* Or the process?

Interface design: man pages help

« Writing a man page (or other doc) can help
with interface design

« Writing documentation leads to self-review by
implementer(s)

* Documentation broadens audience who can
understand and critique design

Interface consistency

e The problem: some new interfaces are
inconsistent with existing similar interfaces

* Man pages can be used as a reference when
designing new interfaces

Interface consistency: right

mbind(MPOL_MF_MOVE_ALL)
 NUMA memory binding interface
* Requires privilege (CAP_xxx)

« Initial (-rc) implementation used
CAP_SYS_ADMIN

* Reading capabilities(7) showed that existing
related APls used CAP_SYS_NICE

» Final implementation used CAP_SYS_NICE

Interface consistency: wrong (1)

< Various memory-related syscalls specify a
start address + a length

e Some APIs (e.g., mprotect(start, length, ...)):
— Require start to be multiple of page size
— Round /ength up to next page boundary

* Some other APIs (e.g., mlock(start, length)):
— Round start down to page size
— Round /ength up to next page boundary
— mlock(4000, 6000) affects bytes 0..12287

Interface consistency: wrong (2)

remap_file_pages(start, length, ...):
* Why settle just for inconsistent...

— Round start down to page boundary

— Round /ength down to page boundary(!)
e ... when you can also have bizarre:

Background

Man pages: a counter-argument

Man pages matter for kernel developers
Problems maintaining man pages

How to help
— What address range is affected by
remap_file_pages(4000, 6000, ...)?
Problems maintaining man-pages
e Much to do; too few people Background

* Many man pages yet to be written
« Many existing man pages are stale

« Kernel developers have much valuable
knowledge, but are largely absent

* How to know if an interface has changed?
* How to know if a man page is broken?

Man pages: a counter-argument

Man pages are useful for kernel developers
Problems maintaining man pages

How to help

How to help

< Just about anyone can help
« Kernel developers would benefit by helping
* How companies could help

Helping: anyone

* Read HOWTOHELP in man-pages tarball
— List of missing pages
— How to obtain list of FIXMEs
— Tips on how to help in the most helpful way

e Latest tarball at:
http://www._kernel .org/pub/linux/docs/manpages

Helping: kernel developers

Adding/changing an interface?...
Write/update the manual page!

Can't bear messing with groff?
— Submit plain text!
Please provide test programs...

Helping: kernel developers

« System call man pages belong in man-pages,
not separate tarballs

* Many virtues in a consolidated set of man
pages:
— Formatting consistency
— Single known address for man pages patches
— Distributors know where to find manual page
— Consistent interfaces...

Helping: kernel developers

“This [part of the] interface shouldn’t be documented,
because userland shouldn’t be using it [it's only intended
for use in libraries].”

Library developers are in same position as
everyone else

“no documentation” doesn’t always mean
“don’t use this”

Best approach: document interface with
warning about usage

A proposal for kernel developers

< Create and enforce a policy that requires
interface changes to be accompanied by
documentation and test programs

Before saying no...

Consider that good documentation can help
prevent:

— Poorly designed/inconsistent interfaces

— Bugs in new and changed interfaces

Look at long list of FIXMEs and missing pages
There are kernel coding standards; why not
documentation (and testing) standards?

Helping: companies/organisations

e Fund a man-pages maintainer
— Write/update pages
— Vet patches
— Test new interfaces
— Track standards work (POSIX.1-200x/SUSv4 and
beyond)
— Write/choose a style guide
— Maintain a website

mtk-manpages@gmx.net
Michael Kerrisk

Thanks!

www . kernel .org/pub/linux/docs/manpages

