
1

Do manual pages matter?

Michael Kerrisk

linux.conf.au, Sydney, 17 January 2007

www.kernel.org/pub/linux/docs/manpages

mtk-manpages@gmx.net

Outline

Background
Man pages: a counter-argument
Man pages matter for kernel developers
Problems maintaining man pages
How to help

The man-pages project

• Project started 1993
• Documents Linux kernel-userland API…
• and (GNU) C library API
• Sections 2, 3, 4, 5, and 7 of manual pages
• Target audience: userland programmers…
• and kernel developers

Contents of man-pages

• As at man-pages-2.44:
– ~800 man pages (== ~2000 printed pages)
– 2: syscalls
– 3: library functions (glibc)
– 4: devices
– 5: file formats
– 7: overviews, etc

Proportion of source lines (and
number of source files)

man2 (224)

man3 (465)

man4 (25)

man5 (31)

man7 (61)

Background
Man pages: a counter-argument
Man pages matter for kernel developers
Problems maintaining man pages
How to help

“Documentation is fantasy: you have
to read the source code to know

the truth.”

2

Time!

• The kernel is big:
– 2.6.19 kernel source (*.[chS]) is 7.3M lines

• and constantly changing:
– Typical Linux 2.6.x diff –u patch > 1M lines

Reading the source doesn’t cut it

• Reading the source gives the “right” answer
• but… too slow (and hard, especially for

userland programmers)
• We just don’t have the time…

We need summaries of the code

• Understanding of code must be mediated by
natural language summaries

• Discussions
– oral + email
– Take place during development
– but… not so useful later

• Documentation
– most useful form of summary for later

Man pages do matter!

Background
Man pages: a counter-argument
Man pages matter for kernel developers
Problems maintaining man pages
How to help

Why man pages matter for kernel
developers

• Publicity
• Identifying bugs
• Better testing (reducing # of released bugs)
• Better interface design
• Better interface consistency

3

Identifying bugs

• Software is an implementation of an intention
• bug == intention – implementation
• Without documentation, how do we know

whether implementation matches intention?
• And how can we test?

Testing

• Problem: too many bugs in released
interfaces

• Why? Insufficient testing before release

Documentation and Testing

• Documentation can help reduce bugs
• Evidence: the process can work in reverse…

Testing – example 1

inotify
• File change notification API
• Appeared in kernel 2.6.13
• 2.6.16-rc timeframe, I wrote inotify(7)
• Testing: IN_ONESHOT had never worked
• Bug reported; fixed for 2.6.16

Testing – example 2

splice()
• transfer data between file descriptors without

going through user space
• Appeared in kernel 2.6.17
• Simple test programs easily caused hangs
• Bug reported; fixed for 2.6.18

Testing: conclusions

• Documentation goes hand in hand with
testing

• Documentation broadens range of testers
• Testers can determine if implementation ==

intention
• Good, early documentation more & earlier

testing fewer released bugs

4

Interface design

• It’s hard to design a good programming
interfaces

• Getting design wrong is painful…
– Using interface is difficult, and bug-prone
– Difficult/impossible to change design

When interface design goes wrong

dnotify (kernel 2.4; file change notification)
• Many problems in interface design
• Problems led to replacement by inotify
• But… is the problem the developer(s)?
• Or the process?

Interface design: man pages help

• Writing a man page (or other doc) can help
with interface design

• Writing documentation leads to self-review by
implementer(s)

• Documentation broadens audience who can
understand and critique design

Interface consistency

• The problem: some new interfaces are
inconsistent with existing similar interfaces

• Man pages can be used as a reference when
designing new interfaces

Interface consistency: right

mbind(MPOL_MF_MOVE_ALL)
• NUMA memory binding interface
• Requires privilege (CAP_xxx)
• Initial (-rc) implementation used

CAP_SYS_ADMIN

• Reading capabilities(7) showed that existing
related APIs used CAP_SYS_NICE

• Final implementation used CAP_SYS_NICE

Interface consistency: wrong (1)

• Various memory-related syscalls specify a
start address + a length

• Some APIs (e.g., mprotect(start, length, ...)):
– Require start to be multiple of page size
– Round length up to next page boundary

• Some other APIs (e.g., mlock(start, length)):
– Round start down to page size
– Round length up to next page boundary
– mlock(4000, 6000) affects bytes 0..12287

5

Interface consistency: wrong (2)

remap_file_pages(start, length, ...):
• Why settle just for inconsistent…

– Round start down to page boundary
– Round length down to page boundary(!)

• … when you can also have bizarre:
– What address range is affected by

remap_file_pages(4000, 6000, ...) ?

Background
Man pages: a counter-argument
Man pages matter for kernel developers
Problems maintaining man pages
How to help

Problems maintaining man-pages

• Much to do; too few people
• Many man pages yet to be written
• Many existing man pages are stale
• Kernel developers have much valuable

knowledge, but are largely absent
• How to know if an interface has changed?
• How to know if a man page is broken?

Background
Man pages: a counter-argument
Man pages are useful for kernel developers
Problems maintaining man pages
How to help

How to help

• Just about anyone can help
• Kernel developers would benefit by helping
• How companies could help

Helping: anyone

• Read HOWTOHELP in man-pages tarball
– List of missing pages
– How to obtain list of FIXMEs
– Tips on how to help in the most helpful way

• Latest tarball at:
http://www.kernel.org/pub/linux/docs/manpages

6

Helping: kernel developers

• Adding/changing an interface?…
• Write/update the manual page!
• Can’t bear messing with groff?

– Submit plain text!

• Please provide test programs…

Helping: kernel developers

• System call man pages belong in man-pages,
not separate tarballs

• Many virtues in a consolidated set of man
pages:
– Formatting consistency
– Single known address for man pages patches
– Distributors know where to find manual page
– Consistent interfaces…

Helping: kernel developers

“This [part of the] interface shouldn’t be documented,
because userland shouldn’t be using it [it’s only intended

for use in libraries].”

• Library developers are in same position as
everyone else

• “no documentation” doesn’t always mean
“don’t use this”

• Best approach: document interface with
warning about usage

A proposal for kernel developers

• Create and enforce a policy that requires
interface changes to be accompanied by
documentation and test programs

Before saying no…

• Consider that good documentation can help
prevent:
– Poorly designed/inconsistent interfaces
– Bugs in new and changed interfaces

• Look at long list of FIXMEs and missing pages
• There are kernel coding standards; why not

documentation (and testing) standards?

Helping: companies/organisations

• Fund a man-pages maintainer
– Write/update pages
– Vet patches
– Test new interfaces
– Track standards work (POSIX.1-200x/SUSv4 and

beyond)
– Write/choose a style guide
– Maintain a website

7

mtk-manpages@gmx.net
Michael Kerrisk

Thanks!

www.kernel.org/pub/linux/docs/manpages

