
 1man7.org

Michael Kerrisk
© 2012

http://man7.org/
mtk@man7.org
mtk@lwn.net

Why kernel space sucks
(Or: An abridged history of kernel-userspace interface blunders...)

LinuxCon North America

San Diego, Ca., USA
2012-08-29

 2man7.org

Who am I?
● Professionally: programmer (primarily); also

educator and writer
● Working with UNIX + Linux since 1987
● Linux man-pages maintainer since 2004

● 124 releases (as at Aug 2012)
● written or cowritten ~295 of ~950 man pages
● lots of API review and testing, many bug reports

● Author of a book on kernel-userspace API
● IOW: Lots of time looking at the interface

 3man7.org

Intro: Why Userspace Sucks
● Paper/talk by Dave Jones of Red Hat

● First presented at Ottawa LS 2006

● A lead-in to deconstructing a couple of myths
● Why Userspace Sucks → WUSS

● http://www.kernel.org/doc/ols/2006/ols2006v1-pages-441-450.pdf

● http://www.codemonkey.org.uk/projects/talks/ols2k6.tar.gz

● http://lwn.net/Articles/192214/

http://www.kernel.org/doc/ols/2006/ols2006v1-pages-441-450.pdf
http://www.codemonkey.org.uk/projects/talks/ols2k6.tar.gz
http://lwn.net/Articles/192214/

 4man7.org

Motivation for WUSS

● We (kernel developers) have created a kernel
that performs magnificently

● But, can we make it better?
● Why does it take so long to boot, start applications,

and shut down?
● Why does my idle laptop consume so much battery

power?

 5man7.org

Findings from WUSS
● DJ starts instrumenting the kernel, and finds...

● Boot up: 80k stat(), 27k open(), 1.4k exec()
● Shutdown: 23k stat(), 9k open()

● Userspace programmers wreck performance
doing crazy things!
● open() and reparse same file multiple times!
● read config files for many devices not even present!
● stat() (or even open()) 100s of files they never need
● timers triggering regular unnecessary wake-ups

 6man7.org

Conclusions from WUSS
● Room for a lot of improvement in userspace!
● Userspace programmers should be aware of

and using trace and analysis tools
● (perf, LTTng, ftrace, systemtap, strace, valgrind,

PowerTOP, etc.)

 7man7.org

UserspaceKernelspace

“We (kernel developers) are much smarter than
those crazy userspace programmers”

 8man7.org

UserspaceKernelspace

Something's wrong with this
picture...

 9man7.org

Let's question a couple of myths...
● Myth 1: Kernel programmers (can) always get

things right (in the end)
● Myth 2: Code is always the best way to

contribute to Free Software

 10man7.org

Terms: API versus ABI
● API == Application Programming Interface
● ABI == Application Binary Interface

● Conventions used for communicating between two
binaries; for example:
– size of arguments (in bytes),
– meanings of numeric value of args

● API → [compilation] → ABI
● ABI compatibility == compatibility of compiled

binaries
● Changing ABI affects existing compiled binaries

 11man7.org

Myth 1

Kernel programmers
(can) always get things right

(in the end)

Except, there's (at least) one place
where they don't: the interface

 12man7.org

The kernel-userspace interface
● Application programming interface (API)

presented by kernel to userspace programs
● System calls (← I'll focus here)

● Pseudo-file systems (/proc, /sys, etc.)
● ioctl() interfaces (device drivers)
● Netlink sockets
● Obscure pieces (AUXV, VDSO, ...)

 13man7.org

Interface designs must be done

right first time

 14man7.org

Why must interfaces be right first time?
● Code changes != API changes

 15man7.org

Why is fixing interfaces so hard?
● Usually, “fixing” an interface means breaking

the ABI for existing binaries

“Dammit, I'm continually surprised by the *idiots* out there
that don't understand that binary compatibility is one of the

absolute top priorities. The *only* reason for an OS kernel
existing in the first place is to serve user-space. The
kernel has no relevance on its own.” [LKML, Mar 2012]

 16man7.org

We have to live with our mistakes!

An interface design mistake by one
kernel developer creates pain that

thousands of userspace programmers
must live with for decades

 17man7.org

(In truth, there are shades of gray)
● 100% strict interpretation of ABI compatibility

==> never change ABI, not even to fix bugs (no
matter how bad)

● In truth, ABI breakages are weighed against
factors such as:
● How important is it to make a bug fix?
● How likely is existing userspace to be affected by ABI

change, and how much pain will be caused?
– e.g., if interface is new, has very specialized uses, or has

very few users, then maybe it could be changed

 18man7.org

So, what does it mean
to get an API right?

 19man7.org

Doing (kernel-userspace) APIs right
● Properly designed and implemented API should:

● be bug free!
● have a well thought out design

– simple as possible (but no simpler)
– easy to use / difficult to misuse

● be consistent with related/similar APIs
● integrate well with existing APIs

– e.g., interactions with fork(), exec(), threads, signals, FDs?
● be as general as possible
● be extensible, where needed; accommodate future growth trends
● adhere to relevant standards (as far as possible) (e.g., POSIX)
● be as good as, or better than, earlier APIs with similar functionality
● be maintainable over time (a multilayered question)

 20man7.org

So how do kernel
developers score?

 21man7.org

Bugs

 22man7.org

Bugs
● utimensat(2) [2.6.22]

● Set file timestamps
● Multiple bugs!

– http://linux-man-pages.blogspot.com/2008/06/whats-wrong-with-kernel-userland_30.html

● Fixed in 2.6.26

● signalfd() [2.6.22]
● Receive signals via a file descriptor
● Didn't correctly obtain data sent with sigqueue(2)
● Fixed in 2.6.25

 23man7.org

Bugs
● Examples of other interfaces with significant,

easy to find bugs at release:
● inotify [2.6.13]
● splice() [2.6.17] (http://marc.info/?l=linux-mm&m=114238448331607&w=2)

● timerfd [2.6.22] (http://marc.info/?l=linux-kernel&m=118517213626087&w=2)

 24man7.org

Bugs—what's going on?
● There's a quality control issue; way too many

bugs in released interfaces
● Pre-release testing insufficient and haphazard:

● Too few testers (maybe just kernel developer)
● No unit tests
● Insufficient test coverage
● No clear specification against which to test

● Even if bug is fixed, users may still need to care
● special casing for kernel versions

 25man7.org

Thinking about
design

 26man7.org

Code it now, think about it later
● Vanishing arguments:

● readdir(2) ignores count
● getcpu(2) [2.6.19] ignores tcache
● epoll_create() [2.6] ignores size (must be > 0) since

2.6.8

● Probably, argument wasn't needed to start with
● Later recognized as a bad idea and made a no-op

 27man7.org

Code it now, think about it later
● futimesat() [2.6.16]

● Extends utimes()
● Proposed for POSIX.1-2008
● Implemented on Linux
● POSIX.1 committee realizes API is insufficient

→ standardizes different API
● utimensat() added in Linux 2.6.22

 28man7.org

Code it now, think about it later
● Dec 2003: Linux 2.6 added epoll_wait()

● File descriptor monitoring
– (improves on select())

● Nov 2006, 2.6.19 added epoll_pwait() to allow
manipulation of signal mask during call
– Superset of epoll_wait()

● But, already in 2001, POSIX specified pselect() to
fix analogous, well-known problem in select()

 29man7.org

Consistency

 30man7.org

Interface inconsistencies
● mlock(start, length):

● Round start down to page size
● Round length up to next page boundary
● mlock(4000, 6000) affects bytes 0..12287

– (assuming page size is 4096 bytes)

● remap_file_pages(start, length, ...) [2.6]:
● Round start down to page boundary
● Round length down to page boundary(!)
● remap_file_pages(4000, 6000, ...) ? → 0..4095

● Users expect similar APIs to behave similarly

 31man7.org

Confusing the users
● Various system calls allow one process to

change attributes of another process
● e.g., setpriority(), ioprio_set(), migrate_pages(),

prlimit()

● Unprivileged calls require credential matches:
● Some combination of caller's UIDs/GIDs matches

some combination of target's UIDs/GIDs

 32man7.org

Confusing the users
● But, much inconsistency; e.g.:

● setpriority(): euid == t-uid || euid == t-euid
● ioprio_set(): uid == t-uid || euid == t-uid
● migrate_pages(): uid == t-uid || uid == t-suid || euid == t-uid ||

euid == t-suid
● prlimit(): (uid == t-uid && uid == t-euid && uid == t-suid) &&

(gid == t-gid && gid == t-guid && gid == t-sgid) !!!!

● Inconsistency may confuse users into writing
bugs
● Potentially, security-related bugs!

● http://linux-man-pages.blogspot.com/2010/11/system-call-credential-checking-tale-of.html

 33man7.org

Generality

 34man7.org

Is the interface sufficiently general?
● 2.6.22 added timerfd(ufd, flags, utimerspec)

● Create timer that notifies via a file descriptor

● But API didn't allow user to:
● Retrieve previous value when setting new timer value
● Do a “get” to retrieve time until next expiration

– http://marc.info/?l=linux-kernel&m=118517213626087&w=2

– http://lwn.net/Articles/245533/

● Older APIs ([gs]etitimer(), POSIX timers) did
provide this functionality!

 35man7.org

Is the interface sufficiently general?
● Solution:

● timerfd() disabled in kernel 2.6.23
● 2.6.25 did it right:

– timerfd_create(), timerfd_settime(), timerfd_gettime()
– (API analogous to POSIX timers)

● Was an ABI breakage, but
● Only in a single kernel version
● Original API was never exposed via glibc

 36man7.org

Are we learning
from the past?

 37man7.org

Are we learning from past mistakes?
● Dnotify [2.4]

● Directory change notification API
● Many problems

● So, we added inotify [2.6.13]
● Much better, but still has some problems

● Linux 2.6.37 added yet another related API, fanotify
● Designed for virus scanners
● Adds some functionality
● Doesn't provide all functionality of inotify

● Couldn't we have had a new API that did everything?

 38man7.org

Extensibility

 39man7.org

Is the interface extensible?
● Too often, an early syscall didn't allow for

extensions
● Common solution is a new syscall, with a flags arg:

● umount() → umount2() [2.2]
● epoll_create() [2.6] → epoll_create2() [2.6.27]
● futimesat() [2.6.16] → utimensat() [2.6.22]
● signalfd() [2.6.22] → signalfd4() [2.6.27]

● When adding a new syscall, consider adding an
(unused) flags argument to allow extensions

 40man7.org

Futureproofing
● Suppose a syscall has a flags bit-mask arg.
● Implementation should always have check like:

if (flags & ~(FL_X | FL_Y))
 return -EINVAL;
 // Only allow caller to specify flags
 // bits that have a defined meaning

● Without this check, interface is “loose”

 41man7.org

Futureproofing
● Suppose user makes a call of form:

 syscallxyz(-1); // flags has all bits set

● If implementer later adds FL_Z, an ABI
breakage occurs for user's code

● Conversely: user has no way of checking if a
particular kernel implements FL_Z

● Many system calls lack this kind of check!
● Linux 3.2 examples: sigaction(sa.sa_flags), recv(),

send(), clock_nanosleep(), msgrcv(), msgget(),
semget(), shmget(), shmat(), semop(sops.sem_flg)

 42man7.org

Futureproofing
● Should checks be added after the fact?

● e.g., umount2() [2.2] added check in 2.6.34;
timerfd_settime() [2.6.25] added check in 2.6.29

● But adding check can also create ABI breakage
● Apps get errors where previously they did not

– e.g., kernel commit a8159414, epoll_ctl(), May 2012

● Loose APIs allow the user to define interface
● Worst case: can't add new flags values to interface

 43man7.org

Futureproofing failures
● 16 bits is enough for UIDs/GIDs...

● 2.4: 32-bit UIDs/GIDs

● 32 bits is enough for file offsets
● Okay, it was 1991, but Moore's law...
● 2.4: 64-bit file offsets

● So we have
● oldstat(), stat(), stat64()
● chown(), chown32()
● open(), open64()
● and so on

 44man7.org

Maintainability

 45man7.org

When good ideas go astray
● Traditional UNIX gives root all privileges

● All or nothing is risky!

● Linux capabilities divide root privileges into
distinct pieces
● Trade-off:

– Want to split root into meaningfully separate pieces
– Too many pieces becomes unmanageable

 46man7.org

When good ideas go astray
● Linux 3.2 has 36 capabilities:

● CAP_AUDIT_CONTROL, CAP_AUDIT_WRITE, CAP_CHOWN, CAP_DAC_OVERRIDE, CAP_DAC_READ_SEARCH,
CAP_FOWNER, CAP_FSETID, CAP_IPC_LOCK, CAP_IPC_OWNER, CAP_KILL, CAP_LEASE,
CAP_LINUX_IMMUTABLE, CAP_MAC_ADMIN, CAP_MAC_OVERRIDE, CAP_MKNOD, CAP_NET_ADMIN,
CAP_NET_BIND_SERVICE, CAP_NET_BROADCAST, CAP_NET_RAW, CAP_SETFCAP, CAP_SETGID, CAP_SETPCAP,
CAP_SETUID, CAP_SYSLOG, CAP_SYS_ADMIN, CAP_SYS_BOOT, CAP_SYS_CHROOT, CAP_SYS_MODULE,
CAP_SYS_NICE, CAP_SYS_PACCT, CAP_SYS_PTRACE, CAP_SYS_RAWIO, CAP_SYS_RESOURCE, CAP_SYS_TIME,
CAP_SYS_TTY_CONFIG, CAP_WAKE_ALARM

● But which capability do I use for my new feature?
● I don't know... maybe CAP_SYS_ADMIN?

● CAP_SYS_ADMIN, the new root, 451 uses in 3.2
● (out of 1167 total uses of CAP_*)

– https://lwn.net/Articles/486306/

 47man7.org

Standards and portability

 48man7.org

Needlessly breaking portability
● sched_setscheduler()

● POSIX: successful call must return previous policy
● Linux: successful call returns 0
● No good reason for this inconsistency
● Developers must special case code for Linux

 49man7.org

Actually,
it wasn't just us...

 50man7.org

We're just traditionalists...
● These kinds of problems predate Linux:

● Using syscall function result to both return info on
success and indicate an error creates problems
– Some syscalls can return -1 on success (e.g., getpriority())

● API of System V IPC is awful!
● Semantics of fcntl() locks when FD is closed render

locks useless for libraries
● select() modifies FD sets in place, forcing

reinitialization inside loops
– poll() gets it right: uses separate input and output args

● and so on...

 51man7.org

Summary?

We could be doing a lot
better at API design

 52man7.org

Why do these API problems
keep happening?

● Excessive focus on code as primary
contribution of value for a software project

● Poor feedback loop between developers and
users

 53man7.org

Myth 2

Code is always the best way
to contribute to Free Software

 54man7.org

“Show me the code!”

But anyone can write code,
and if the design is good

but the code is bad,
the code can usually be fixed

 55man7.org

“Show me the code!”

Sometimes,
other sentences are more appropriate,
and encourage contributions that are

as (or more) valuable

 56man7.org

“Show me the users'
requirements!”

 57man7.org

“Show me the users' requirements”
● Does API serve needs of multiple users, or is it

just one developer scratching an itch?
● Beware of limited perspectives!

● Is API designed for generality?
● Is API extensible for possible future

requirements?

 58man7.org

“Show me the design
specification / documentation!”

 59man7.org

“Show me the design spec. / documentation!”

● How do we know if implementation deviates
from intention?

● What shall we code our tests against?
● Writing documentation turns out often to be a

natural sanity check for design
● A decent man page suffices

● Most of the bugs mentioned earlier were found
while writing man pages...

● Just a question of when man page is written...

 60man7.org

“Show me the design spec. / documentation!”

“Programming is not just an act of telling a computer what to
do: it is also an act of telling other programmers what you

wished the computer to do. Both are important, and the
latter deserves care.”

[Andrew Morton, LKML, Mar 2012]

 61man7.org

“Show me the design review!”

 62man7.org

“Show me the design review!”
● Did other people actually review your design?
● Is API:

● as simple as possible?
● easy to use / difficult to misuse?
● consistent with related/similar APIs?
● well integrated with existing APIs?
● as general as possible
● extensible?
● following standards, where relevant?
● at least as good as earlier APIs with similar functionality?
● maintainable?

 63man7.org

“Show me the tests!”

 64man7.org

“Show me the tests!”
● Did you (the developer) write some tests?
● Did someone else write some tests?
● Do the tests cover all reasonable cases?
● Do you test for unreasonable cases?

● Do unexpected inputs generate suitable error returns?

● While writing tests, did you find the interface easy
to use / difficult to misuse?
● (Did you consequently make some design changes?)

 65man7.org

Finally...

● If you're a potential contributor, don't fall into the
trap of believing that code is the only (or best)
vehicle for contribution

● As a maintainer, are you encouraging these
other types of contribution?

 66man7.org

Thanks! And Questions

Michael Kerrisk
mtk@man7.org
http://man7.org/tlpi

Linux man-pages project
mtk.manpages@gmail.com
http://www.kernel.org/doc/man-pages/

(No Starch Press, 2010)

(slides up soon at http://man7.org/conf/)

M
a

m
a

ku
 (

B
la

c k
 T

re
e

 F
e

r n
)

im
a

g
e

 (
c)

 R
o

b
 S

u
is

te
d

n
a

t u
re

sp
ic

. c
o

m

LWN.net
mtk@lwn.net
http://lwn.net/

http://man7.org/conf/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

