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Who am I?
● Professionally: programmer (primarily); also 

educator and writer
● Working with UNIX + Linux since 1987
● Linux man-pages maintainer since 2004

● 124 releases (as at Aug 2012)
● written or cowritten ~295 of ~950 man pages
● lots of API review and testing, many bug reports

● Author of a book on kernel-userspace API
● IOW: Lots of time looking at the interface
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Intro: Why Userspace Sucks
● Paper/talk by Dave Jones of Red Hat

● First presented at Ottawa LS 2006

● A lead-in to deconstructing a couple of myths
● Why Userspace Sucks → WUSS

● http://www.kernel.org/doc/ols/2006/ols2006v1-pages-441-450.pdf

● http://www.codemonkey.org.uk/projects/talks/ols2k6.tar.gz

● http://lwn.net/Articles/192214/

http://www.kernel.org/doc/ols/2006/ols2006v1-pages-441-450.pdf
http://www.codemonkey.org.uk/projects/talks/ols2k6.tar.gz
http://lwn.net/Articles/192214/
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Motivation for WUSS

● We (kernel developers) have created a kernel 
that performs magnificently

● But, can we make it better?
● Why does it take so long to boot, start applications, 

and shut down?
● Why does my idle laptop consume so much battery 

power?
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Findings from WUSS
● DJ starts instrumenting the kernel, and finds...

● Boot up: 80k stat(), 27k open(), 1.4k exec()
● Shutdown: 23k stat(), 9k open()

● Userspace programmers wreck performance 
doing crazy things!
● open() and reparse same file multiple times!
● read config files for many devices not even present!
● stat() (or even open()) 100s of files they never need
● timers triggering regular unnecessary wake-ups
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Conclusions from WUSS
● Room for a lot of improvement in userspace!
● Userspace programmers should be aware of 

and using trace and analysis tools
● (perf, LTTng, ftrace, systemtap, strace, valgrind, 

PowerTOP, etc.)
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UserspaceKernelspace

“We (kernel developers) are much smarter than
those crazy userspace programmers”
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UserspaceKernelspace

Something's wrong with this 
picture...
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Let's question a couple of myths...
● Myth 1: Kernel programmers (can) always get 

things right (in the end)
● Myth 2: Code is always the best way to 

contribute to Free Software
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Terms: API versus ABI
● API == Application Programming Interface
● ABI == Application Binary Interface

● Conventions used for communicating between two 
binaries; for example:
– size of arguments (in bytes), 
– meanings of numeric value of args

● API → [compilation] → ABI
● ABI compatibility == compatibility of compiled 

binaries
● Changing ABI affects existing compiled binaries 
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Myth 1

Kernel programmers
(can) always get things right

(in the end)

Except, there's (at least) one place
where they don't: the interface
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The kernel-userspace interface
● Application programming interface (API) 

presented by kernel to userspace programs
● System calls (← I'll focus here)

● Pseudo-file systems (/proc, /sys, etc.)
● ioctl() interfaces (device drivers)
● Netlink sockets
● Obscure pieces (AUXV, VDSO, ...)
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Interface designs must be done

right first time
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Why must interfaces be right first time?
● Code changes != API changes
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Why is fixing interfaces so hard?
● Usually, “fixing” an interface means breaking 

the ABI for existing binaries

“Dammit, I'm continually surprised by the *idiots* out there 
that don't understand that binary compatibility is one of the 

absolute top priorities. The *only* reason for an OS kernel 
existing in the first place is to serve user-space. The 
kernel has no relevance on its own.” [LKML, Mar 2012]
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We have to live with our mistakes!

An interface design mistake by one 
kernel developer creates pain that 

thousands of userspace programmers 
must live with for decades
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(In truth, there are shades of gray)
● 100% strict interpretation of ABI compatibility 

==> never change ABI, not even to fix bugs (no 
matter how bad)

● In truth, ABI breakages are weighed against 
factors such as:
● How important is it to make a bug fix?
● How likely is existing userspace to be affected by ABI 

change, and how much pain will be caused?
– e.g., if interface is new, has very specialized uses, or has 

very few users, then maybe it could be changed
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So, what does it mean
to get an API right?
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Doing (kernel-userspace) APIs right
● Properly designed and implemented API should:

● be bug free!
● have a well thought out design

– simple as possible (but no simpler)
– easy to use / difficult to misuse

● be consistent with related/similar APIs
● integrate well with existing APIs

– e.g., interactions with fork(), exec(), threads, signals, FDs?
● be as general as possible
● be extensible, where needed; accommodate future growth trends
● adhere to relevant standards (as far as possible) (e.g., POSIX)
● be as good as, or better than, earlier APIs with similar functionality
● be maintainable over time (a multilayered question)
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So how do kernel 
developers score?
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Bugs
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Bugs
● utimensat(2) [2.6.22]

● Set file timestamps
● Multiple bugs!

– http://linux-man-pages.blogspot.com/2008/06/whats-wrong-with-kernel-userland_30.html

● Fixed in 2.6.26

● signalfd() [2.6.22]
● Receive signals via a file descriptor
● Didn't correctly obtain data sent with sigqueue(2)
● Fixed in 2.6.25
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Bugs
● Examples of other interfaces with significant, 

easy to find bugs at release:
● inotify [2.6.13]
● splice() [2.6.17] (http://marc.info/?l=linux-mm&m=114238448331607&w=2)

● timerfd [2.6.22] (http://marc.info/?l=linux-kernel&m=118517213626087&w=2)
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Bugs—what's going on?
● There's a quality control issue; way too many 

bugs in released interfaces
● Pre-release testing insufficient and haphazard:

● Too few testers (maybe just kernel developer)
● No unit tests
● Insufficient test coverage
● No clear specification against which to test

● Even if bug is fixed, users may still need to care
● special casing for kernel versions
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Thinking about 
design
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Code it now, think about it later
● Vanishing arguments:

● readdir(2) ignores count
● getcpu(2) [2.6.19] ignores tcache
● epoll_create() [2.6] ignores size (must be > 0) since 

2.6.8

● Probably, argument wasn't needed to start with
● Later recognized as a bad idea and made a no-op
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Code it now, think about it later
● futimesat() [2.6.16]

● Extends utimes()
● Proposed for POSIX.1-2008
● Implemented on Linux
● POSIX.1 committee realizes API is insufficient 

→ standardizes different API
● utimensat() added in Linux 2.6.22
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Code it now, think about it later
● Dec 2003: Linux 2.6 added epoll_wait()

● File descriptor monitoring 
– (improves on select())

● Nov 2006, 2.6.19 added epoll_pwait() to allow 
manipulation of signal mask during call
– Superset of epoll_wait()

● But, already in 2001, POSIX specified pselect() to 
fix analogous, well-known problem in select()
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Consistency
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Interface inconsistencies
● mlock(start, length):

● Round start down to page size
● Round length up to next page boundary
● mlock(4000, 6000) affects bytes 0..12287

– (assuming page size is 4096 bytes)

● remap_file_pages(start, length, ...) [2.6]:
● Round start down to page boundary
● Round length down to page boundary(!)
● remap_file_pages(4000, 6000, ...) ? → 0..4095

● Users expect similar APIs to behave similarly
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Confusing the users
● Various system calls allow one process to 

change attributes of another process
● e.g., setpriority(), ioprio_set(), migrate_pages(), 

prlimit()

● Unprivileged calls require credential matches: 
● Some combination of caller's UIDs/GIDs matches 

some combination of target's UIDs/GIDs
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Confusing the users
● But, much inconsistency; e.g.:

● setpriority(): euid == t-uid || euid == t-euid
● ioprio_set(): uid == t-uid || euid == t-uid
● migrate_pages(): uid == t-uid || uid == t-suid || euid == t-uid || 

euid == t-suid
● prlimit(): (uid == t-uid && uid == t-euid && uid == t-suid) && 

(gid == t-gid && gid == t-guid && gid == t-sgid)     !!!!

● Inconsistency may confuse users into writing 
bugs
● Potentially, security-related bugs!

● http://linux-man-pages.blogspot.com/2010/11/system-call-credential-checking-tale-of.html
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Generality
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Is the interface sufficiently general?
● 2.6.22 added timerfd(ufd, flags, utimerspec)

● Create timer that notifies via a file descriptor

● But API didn't allow user to:
● Retrieve previous value when setting new timer value
● Do a “get” to retrieve time until next expiration

– http://marc.info/?l=linux-kernel&m=118517213626087&w=2

– http://lwn.net/Articles/245533/

● Older APIs ([gs]etitimer(), POSIX timers) did 
provide this functionality!
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Is the interface sufficiently general?
● Solution:

● timerfd() disabled in kernel 2.6.23
● 2.6.25 did it right: 

– timerfd_create(), timerfd_settime(), timerfd_gettime()
– (API analogous to POSIX timers)

● Was an ABI breakage, but
● Only in a single kernel version
● Original API was never exposed via glibc 
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Are we learning
from the past?
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Are we learning from past mistakes?
● Dnotify [2.4]

● Directory change notification API
● Many problems

● So, we added inotify [2.6.13]
● Much better, but still has some problems

● Linux 2.6.37 added yet another related API, fanotify
● Designed for virus scanners
● Adds some functionality
● Doesn't provide all functionality of inotify

● Couldn't we have had a new API that did everything?
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Extensibility
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Is the interface extensible?
● Too often, an early syscall didn't allow for 

extensions
● Common solution is a new syscall, with a flags arg:

● umount() → umount2() [2.2]
● epoll_create() [2.6] → epoll_create2() [2.6.27]
● futimesat() [2.6.16] → utimensat() [2.6.22]
● signalfd() [2.6.22] → signalfd4() [2.6.27]

● When adding a new syscall, consider adding an 
(unused) flags argument to allow extensions
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Futureproofing
● Suppose a syscall has a flags bit-mask arg.
● Implementation should always have check like:

if (flags & ~(FL_X | FL_Y))
    return -EINVAL;
    // Only allow caller to specify flags
    // bits that have a defined meaning

● Without this check, interface is “loose”
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Futureproofing
● Suppose user makes a call of form:

  syscallxyz(-1);  // flags has all bits set

● If implementer later adds FL_Z, an ABI 
breakage occurs for user's code

● Conversely: user has no way of checking if a 
particular kernel implements FL_Z

● Many system calls lack this kind of check!
● Linux 3.2 examples: sigaction(sa.sa_flags), recv(), 

send(), clock_nanosleep(), msgrcv(), msgget(), 
semget(), shmget(), shmat(), semop(sops.sem_flg)
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Futureproofing
● Should checks be added after the fact?

● e.g., umount2() [2.2] added check in 2.6.34; 
timerfd_settime() [2.6.25] added check in 2.6.29

● But adding check can also create ABI breakage
● Apps get errors where previously they did not

– e.g., kernel commit a8159414, epoll_ctl(), May 2012

● Loose APIs allow the user to define interface
● Worst case: can't add new flags values to interface
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Futureproofing failures
● 16 bits is enough for UIDs/GIDs...

● 2.4: 32-bit UIDs/GIDs

● 32 bits is enough for file offsets
● Okay, it was 1991, but Moore's law...
● 2.4: 64-bit file offsets

● So we have
● oldstat(), stat(), stat64()
● chown(), chown32()
● open(), open64()
● and so on
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Maintainability
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When good ideas go astray
● Traditional UNIX gives root all privileges

● All or nothing is risky!

● Linux capabilities divide root privileges into 
distinct pieces
● Trade-off:

– Want to split root into meaningfully separate pieces
– Too many pieces becomes unmanageable
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When good ideas go astray
● Linux 3.2 has 36 capabilities: 

● CAP_AUDIT_CONTROL, CAP_AUDIT_WRITE, CAP_CHOWN, CAP_DAC_OVERRIDE, CAP_DAC_READ_SEARCH, 
CAP_FOWNER, CAP_FSETID, CAP_IPC_LOCK, CAP_IPC_OWNER, CAP_KILL, CAP_LEASE, 
CAP_LINUX_IMMUTABLE, CAP_MAC_ADMIN, CAP_MAC_OVERRIDE, CAP_MKNOD, CAP_NET_ADMIN, 
CAP_NET_BIND_SERVICE, CAP_NET_BROADCAST, CAP_NET_RAW, CAP_SETFCAP, CAP_SETGID, CAP_SETPCAP, 
CAP_SETUID, CAP_SYSLOG, CAP_SYS_ADMIN, CAP_SYS_BOOT, CAP_SYS_CHROOT, CAP_SYS_MODULE, 
CAP_SYS_NICE, CAP_SYS_PACCT, CAP_SYS_PTRACE, CAP_SYS_RAWIO, CAP_SYS_RESOURCE, CAP_SYS_TIME, 
CAP_SYS_TTY_CONFIG, CAP_WAKE_ALARM

● But which capability do I use for my new feature?
● I don't know... maybe CAP_SYS_ADMIN?

● CAP_SYS_ADMIN, the new root, 451 uses in 3.2
● (out of 1167 total uses of CAP_*)

– https://lwn.net/Articles/486306/
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Standards and portability
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Needlessly breaking portability
● sched_setscheduler()

● POSIX: successful call must return previous policy
● Linux: successful call returns 0
● No good reason for this inconsistency
● Developers must special case code for Linux
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Actually, 
it wasn't just us...
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We're just traditionalists...
● These kinds of problems predate Linux:

● Using syscall function result to both return info on 
success and indicate an error creates problems
– Some syscalls can return -1 on success (e.g., getpriority())

● API of System V IPC is awful!
● Semantics of fcntl() locks when FD is closed render 

locks useless for libraries
● select() modifies FD sets in place, forcing 

reinitialization inside loops
– poll() gets it right: uses separate input and output args

● and so on...
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Summary?

We could be doing a lot 
better at API design
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Why do these API problems 
keep happening?

● Excessive focus on code as primary 
contribution of value for a software project

● Poor feedback loop between developers and 
users
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Myth 2

Code is always the best way 
to contribute to Free Software
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“Show me the code!”

But anyone can write code, 
and if the design is good 

but the code is bad, 
the code can usually be fixed
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“Show me the code!”

Sometimes,
other sentences are more appropriate,
and encourage contributions that are 

as (or more) valuable
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“Show me the users' 
requirements!”



 57man7.org

“Show me the users' requirements”
● Does API serve needs of multiple users, or is it 

just one developer scratching an itch?
● Beware of limited perspectives!

● Is API designed for generality?
● Is API extensible for possible future 

requirements?
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“Show me the design 
specification / documentation!”
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“Show me the design spec. / documentation!”

● How do we know if implementation deviates 
from intention?

● What shall we code our tests against?
● Writing documentation turns out often to be a 

natural sanity check for design
● A decent man page suffices

● Most of the bugs mentioned earlier were found 
while writing man pages...

● Just a question of when man page is written...
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“Show me the design spec. / documentation!”

“Programming is not just an act of telling a computer what to 
do: it is also an act of telling other programmers what you 

wished the computer to do. Both are important, and the 
latter deserves care.”

[Andrew Morton, LKML, Mar 2012]
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“Show me the design review!”
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“Show me the design review!”
● Did other people actually review your design?
● Is API:

● as simple as possible?
● easy to use / difficult to misuse?
● consistent with related/similar APIs?
● well integrated with existing APIs?
● as general as possible
● extensible?
● following standards, where relevant?
● at least as good as earlier APIs with similar functionality?
● maintainable?
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“Show me the tests!”
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“Show me the tests!”
● Did you (the developer) write some tests?
● Did someone else write some tests?
● Do the tests cover all reasonable cases?
● Do you test for unreasonable cases?

● Do unexpected inputs generate suitable error returns?

● While writing tests, did you find the interface easy 
to use / difficult to misuse? 
● (Did you consequently make some design changes?)
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Finally...

● If you're a potential contributor, don't fall into the 
trap of believing that code is the only (or best) 
vehicle for contribution

● As a maintainer, are you encouraging these 
other types of contribution?
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Thanks! And Questions

Michael Kerrisk
mtk@man7.org 
http://man7.org/tlpi

Linux man-pages project
mtk.manpages@gmail.com 
http://www.kernel.org/doc/man-pages/

(No Starch Press, 2010)

(slides up soon at http://man7.org/conf/)
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