
LPC 2015

Using seccomp to limit the
kernel attack surface

Michael Kerrisk, man7.org c© 2015
man7.org Training and Consulting

http://man7.org/training/

19 August 2015
Seattle, Washington, USA

Outline

1 Introductions
2 Introduction and history
3 Seccomp filtering and BPF
4 Constructing seccomp filters
5 BPF programs
6 Further details on seccomp filters
7 Applications, tools, and further information

Outline

1 Introductions
2 Introduction and history
3 Seccomp filtering and BPF
4 Constructing seccomp filters
5 BPF programs
6 Further details on seccomp filters
7 Applications, tools, and further information

Who am I?

Maintainer of Linux man-pages (since 2004)
Documents kernel-user-space + C library APIs

˜1000 manual pages
http://www.kernel.org/doc/man-pages/

API review, testing, and documentation
API design and design review
Lots of testing, lots of bug reports, a few kernel patches

“Day job”: programmer, trainer, writer

LPC 2015 (C) 2015 Michael Kerrisk Introductions 4 / 54

Outline

1 Introductions
2 Introduction and history
3 Seccomp filtering and BPF
4 Constructing seccomp filters
5 BPF programs
6 Further details on seccomp filters
7 Applications, tools, and further information

Goals

History of seccomp
Basics of seccomp operation
Creating and installing BPF filters (AKA “seccomp2”)

Mostly: look at hand-coded BPF filter programs, to gain
fundamental understanding of how seccomp works
Briefly note some productivity aids for coding BPF
programs

LPC 2015 (C) 2015 Michael Kerrisk Introduction and history 6 / 54

Introduction and history

Mechanism to restrict system calls that a process may make
Reduces attack surface of kernel
A key component for building application sandboxes

First version in Linux 2.6.12 (2005)
Filtering enabled via /proc/PID/seccomp

Writing “1” to file places process (irreversibly) in “strict”
seccomp mode

Need CONFIG_SECCOMP

LPC 2015 (C) 2015 Michael Kerrisk Introduction and history 7 / 54

Introduction and history

Initially, just one filtering mode (“strict”)
Only permitted system calls are read(), write(), _exit(), and
sigreturn()

Note: open() not included (must open files before entering
strict mode)
sigreturn() allows for signal handlers

Other system calls ⇒ SIGKILL
Designed to sandbox compute-bound programs that deal
with untrusted byte code

Code perhaps exchanged via pre-created pipe or socket

LPC 2015 (C) 2015 Michael Kerrisk Introduction and history 8 / 54

Introduction and history

Linux 2.6.23 (2007):
/proc/PID/seccomp interface replaced by prctl() operations
prctl(PR_SET_SECCOMP, arg) modifies caller’s seccomp
mode

SECCOMP_MODE_STRICT: limit syscalls as before
prctl(PR_GET_SECCOMP) returns seccomp mode:

0 ⇒ process is not in seccomp mode
Otherwise?
SIGKILL (!)

prctl() is not a permitted system call in “strict” mode
Who says kernel developers don’t have a sense of humor?

LPC 2015 (C) 2015 Michael Kerrisk Introduction and history 9 / 54

Introduction and history

Linux 3.5 (2012) adds “filter” mode (AKA “seccomp2”)
prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, ...)
Can control which system calls are permitted,

Control based on system call number and argument values
Choice is controlled by user-defined filter–a BPF “program”

Berkeley Packet Filter (later)

Requires CONFIG_SECCOMP_FILTER
By now used in a range of tools

E.g., Chrome browser, OpenSSH, vsftpd, Firefox OS,
Docker

LPC 2015 (C) 2015 Michael Kerrisk Introduction and history 10 / 54

Introduction and history

Linux 3.8 (2013):
The joke is getting old...
New /proc/PID/status Seccomp field exposes process
seccomp mode (as a number)
0 // SECCOMP_MODE_DISABLED
1 // SECCOMP_MODE_STRICT
2 // SECCOMP_MODE_FILTER

Process can, without fear, read from this file to discover its
own seccomp mode

But, must have previously obtained a file descriptor...

LPC 2015 (C) 2015 Michael Kerrisk Introduction and history 11 / 54

Introduction and history

Linux 3.17 (2014):
seccomp() system call added

(Rather than further multiplexing of prctl())
Provides superset of prctl(2) functionality

Can synchronize all threads to same filter tree
Useful, e.g., if some threads created by start-up code before
application has a chance to install filter(s)

LPC 2015 (C) 2015 Michael Kerrisk Introduction and history 12 / 54

Outline

1 Introductions
2 Introduction and history
3 Seccomp filtering and BPF
4 Constructing seccomp filters
5 BPF programs
6 Further details on seccomp filters
7 Applications, tools, and further information

Seccomp filtering and BPF

Seccomp filtering available since Linux 3.5
Allows filtering based on system call number and argument
(register) values

Pointers are not dereferenced
Filters expressed using BPF (Berkeley Packet Filter) syntax
Filters installed using seccomp() or prctl()

1 Construct and install BPF filter
2 exec() new program or invoke function inside dynamically

loaded shared library (plug-in)
Once installed, every syscall triggers execution of filter

Installed filters can’t be removed
Filter == declaration that we don’t trust subsequently
executed code

LPC 2015 (C) 2015 Michael Kerrisk Seccomp filtering and BPF 14 / 54

BPF origins

BPF originally devised (in 1992) for tcpdump
Monitoring tool to display packets passing over network
http://www.tcpdump.org/papers/bpf-usenix93.pdf

Volume of network traffic is enormous ⇒ must filter for
packets of interest
BPF allows in-kernel selection of packets

Filtering based on fields in packet header
Filtering in kernel more efficient than filtering in user space

Unwanted packet are discarded early
⇒ Avoids passing every packet over kernel-user-space
boundary

LPC 2015 (C) 2015 Michael Kerrisk Seccomp filtering and BPF 15 / 54

BPF virtual machine

BPF defines a virtual machine (VM) that can be
implemented inside kernel
VM characteristics:

Simple instruction set
Small set of instructions
All instructions are same size
Implementation is simple and fast

Only branch-forward instructions
Programs are directed acyclic graphs (DAGs)

Easy to verify validity/safety of programs
Program completion is guaranteed (DAGs)
Simple instruction set ⇒ can verify opcodes and arguments
Can detect dead code
Can verify that program completes via a “return” instruction
BPF filter programs are limited to 4096 instructions

LPC 2015 (C) 2015 Michael Kerrisk Seccomp filtering and BPF 16 / 54

Generalizing BPF

BPF originally designed to work with network packet headers
Seccomp 2 developers realized BPF could be generalized to
solve different problem: filtering of system calls

Same basic task: test-and-branch processing based on
content of a small set of memory locations

Further generalization (“extended BPF”) is ongoing
Linux 3.18: adding filters to kernel tracepoints
Linux 3.19: adding filters to raw sockets
In progress (July 2015): filtering of perf events

LPC 2015 (C) 2015 Michael Kerrisk Seccomp filtering and BPF 17 / 54

Outline

1 Introductions
2 Introduction and history
3 Seccomp filtering and BPF
4 Constructing seccomp filters
5 BPF programs
6 Further details on seccomp filters
7 Applications, tools, and further information

Basic features of BPF virtual machine

Accumulator register
Data area (data to be operated on)

In seccomp context: data area describes system call
Implicit program counter

(Recall: all instructions are same size)
Instructions contained in structure of this form:
struct sock_filter { /* Filter block */

__u16 code; /* Filter code (opcode)*/
__u8 jt; /* Jump true */
__u8 jf; /* Jump false */
__u32 k; /* Generic multiuse field */

};

See <linux/filter.h> and <linux/bpf_common.h>

LPC 2015 (C) 2015 Michael Kerrisk Constructing seccomp filters 19 / 54

BPF instruction set

Instruction set includes:
Load instructions
Store instructions
Jump instructions
Arithmetic/logic instructions

ADD, SUB, MUL, DIV, MOD, NEG
OR, AND, XOR, LSH, RSH

Return instructions
Terminate filter processing
Report a status telling kernel what to do with syscall

LPC 2015 (C) 2015 Michael Kerrisk Constructing seccomp filters 20 / 54

BPF jump instructions

Conditional and unconditional jump instructions provided
Conditional jump instructions consist of

Opcode specifying condition to be tested
Value to test against
Two jump targets

jt: target if condition is true
jf: target if condition is false

Conditional jump instructions:
JEQ: jump if equal
JGT: jump if greater
JGE: jump if greater or equal
JSET: bit-wise AND + jump if nonzero result
jf target ⇒ no need for JNE, JLT, JLE, and JCLEAR

LPC 2015 (C) 2015 Michael Kerrisk Constructing seccomp filters 21 / 54

BPF jump instructions

Targets are expressed as relative offsets in instruction list
0 == no jump (execute next instruction)
jt and jf are 8 bits ⇒ 255 maximum offset for conditional
jumps

Unconditional JA (“jump always”) uses k as offset, allowing
much larger jumps

LPC 2015 (C) 2015 Michael Kerrisk Constructing seccomp filters 22 / 54

Seccomp BPF data area

Seccomp provides data describing syscall to filter program
Buffer is read-only

Format (expressed as C struct):

struct seccomp_data {
int nr; /* System call number */
__u32 arch; /* AUDIT_ARCH_ * value */
__u64 instruction_pointer ; /* CPU IP */
__u64 args [6]; /* System call arguments */

};

LPC 2015 (C) 2015 Michael Kerrisk Constructing seccomp filters 23 / 54

Seccomp BPF data area

struct seccomp_data {
int nr; /* System call number */
__u32 arch; /* AUDIT_ARCH_ * value */
__u64 instruction_pointer ; /* CPU IP */
__u64 args [6]; /* System call arguments */

};

nr: system call number (architecture-dependent)
arch: identifies architecture

Constants defined in <linux/audit.h>
AUDIT_ARCH_X86_64, AUDIT_ARCH_I386,
AUDIT_ARCH_ARM, etc.

instruction_pointer: CPU instruction pointer
args: system call arguments

System calls have maximum of six arguments
Number of elements used depends on system call

LPC 2015 (C) 2015 Michael Kerrisk Constructing seccomp filters 24 / 54

Building BPF instructions

Obviously, one can code BPF instructions numerically by
hand
But, header files define symbolic constants and convenience
macros (BPF_STMT(), BPF_JUMP()) to ease the task

define BPF_STMT (code , k) \
{ (unsigned short)(code), 0, 0, k }

define BPF_JUMP (code , k, jt , jf) \
{ (unsigned short)(code), jt , jf , k }

(Macros just plug values together to form structure)

LPC 2015 (C) 2015 Michael Kerrisk Constructing seccomp filters 25 / 54

Building BPF instructions: examples

Load architecture number into accumulator
BPF_STMT (BPF_LD | BPF_W | BPF_ABS ,

(offsetof (struct seccomp_data , arch)))

Opcode here is constructed by ORing three values together:
BPF_LD: load
BPF_W: operand size is a word
BPF_ABS: address mode specifying that source of load is
data area (containing system call data)
See <linux/bpf_common.h> for definitions of opcode
constants

offsetof() generates offset of desired field in data area

LPC 2015 (C) 2015 Michael Kerrisk Constructing seccomp filters 26 / 54

Building BPF instructions: examples

Test value in accumulator
BPF_JUMP (BPF_JMP | BPF_JEQ | BPF_K ,

AUDIT_ARCH_X86_64 , 1, 0)

BPF_JMP | BPF_JEQ: jump with test on equality
BPF_K: value to test against is in generic multiuse field (k)
k contains value AUDIT_ARCH_X86_64

jt value is 1, meaning skip one instruction if test is true
jf value is 0, meaning skip zero instructions if test is false

I.e., continue execution at following instruction

Return value that causes kernel to kill process with SIGSYS
BPF_STMT (BPF_RET | BPF_K , SECCOMP_RET_KILL)

LPC 2015 (C) 2015 Michael Kerrisk Constructing seccomp filters 27 / 54

Checking the architecture

Checking architecture value should be first step in any BPF
program
Architecture may support multiple system call conventions

E.g. x86 hardware supports x86-64 and i386
System call numbers may differ or overlap

LPC 2015 (C) 2015 Michael Kerrisk Constructing seccomp filters 28 / 54

Filter return value

Once a filter is installed, each system call is tested against
filter
Seccomp filter must return a value to kernel indicating
whether system call is permitted

Otherwise EINVAL when attempting to install filter
Return value is 32 bits, in two parts:

Most significant 16 bits (SECCOMP_RET_ACTION mask)
specify an action to kernel
Least significant 16 bits (SECCOMP_RET_DATA mask) specify
“data” for return value

LPC 2015 (C) 2015 Michael Kerrisk Constructing seccomp filters 29 / 54

Filter return action

Filter return action component is one of
SECCOMP_RET_ALLOW: system call is executed
SECCOMP_RET_KILL: process is immediately terminated

Terminated as though process had been killed with SIGSYS

SECCOMP_RET_ERRNO: return an error from system call
System call is not executed
Value in SECCOMP_RET_DATA is returned in errno

SECCOMP_RET_TRACE: attempt to notify ptrace() tracer
Gives tracing process a chance to assume control
See seccomp(2)

SECCOMP_RET_TRAP: process is sent SIGSYS signal
Can catch this signal; see seccomp(2) for more details

LPC 2015 (C) 2015 Michael Kerrisk Constructing seccomp filters 30 / 54

Outline

1 Introductions
2 Introduction and history
3 Seccomp filtering and BPF
4 Constructing seccomp filters
5 BPF programs
6 Further details on seccomp filters
7 Applications, tools, and further information

Installing a BPF program

A process installs a filter for itself using one of:
seccomp(SECCOMP_SET_MODE_FILTER, flags, &fprog)

Only since Linux 3.17

prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER,
&fprog)

&fprog is a pointer to a BPF program:
struct sock_fprog {

unsigned short len; /* Number of instructions */
struct sock_filter * filter ;

/* Pointer to program
(array of instructions) */

};

LPC 2015 (C) 2015 Michael Kerrisk BPF programs 32 / 54

Installing a BPF program

To install a filter, one of the following must be true:
Caller is privileged (CAP_SYS_ADMIN)
Caller has to set the no_new_privs process attribute:
prctl(PR_SET_NO_NEW_PRIVS , 1);

Causes set-UID/set-GID bit / file capabilities to be ignored
on subsequent execve() calls

Once set, no_new_privs can’t be unset

Prevents possibility of attacker starting privileged program
and manipulating it to misbehave using a seccomp filter

LPC 2015 (C) 2015 Michael Kerrisk BPF programs 33 / 54

Example: seccomp/seccomp_deny_open.c

1 int main(int argc , char ** argv) {
2 prctl(PR_SET_NO_NEW_PRIVS , 1, 0, 0, 0);
3
4 install_filter ();
5
6 open("/tmp/a", O_RDONLY , 0666);
7
8 printf (" We shouldn ’t see this message \n");
9 exit(EXIT_SUCCESS);

10 }

Program installs a filter that prevents open() being called, and
then calls open()

Set no_new_privs bit
Install seccomp filter
Call open()

LPC 2015 (C) 2015 Michael Kerrisk BPF programs 34 / 54

Example: seccomp/seccomp_deny_open.c

1 static void install_filter (void) {
2 struct sock_filter filter [] = {
3 BPF_STMT (BPF_LD | BPF_W | BPF_ABS ,
4 (offsetof (struct seccomp_data , arch))),
5 BPF_JUMP (BPF_JMP | BPF_JEQ | BPF_K ,
6 AUDIT_ARCH_X86_64 , 1, 0),
7 BPF_STMT (BPF_RET | BPF_K , SECCOMP_RET_KILL),
8 ...

Define and initialize array (of structs) containing BPF filter
program
Load architecture into accumulator
Test if architecture value matches AUDIT_ARCH_X86_64

True: jump forward one instruction (i.e., skip next
instruction)
False: skip no instructions

Kill process on architecture mismatch
LPC 2015 (C) 2015 Michael Kerrisk BPF programs 35 / 54

Example: seccomp/seccomp_deny_open.c

1 BPF_STMT (BPF_LD | BPF_W | BPF_ABS ,
2 (offsetof (struct seccomp_data , nr))),
3
4 BPF_JUMP (BPF_JMP | BPF_JEQ | BPF_K , __NR_open ,
5 1, 0),
6 BPF_STMT (BPF_RET | BPF_K , SECCOMP_RET_ALLOW),
7
8 BPF_STMT (BPF_RET | BPF_K , SECCOMP_RET_KILL)
9 };

Remainder of filter program
Load system call number into accumulator
Test if system call number matches __NR_open

True: advance one instruction ⇒ kill process
False: advance 0 instructions ⇒ allow system call

LPC 2015 (C) 2015 Michael Kerrisk BPF programs 36 / 54

Example: seccomp/seccomp_deny_open.c

1 struct sock_fprog prog = {
2 .len = (unsigned short) (sizeof (filter) /
3 sizeof (filter [0])) ,
4 . filter = filter ,
5 };
6
7 seccomp (SECCOMP_SET_MODE_FILTER , 0, &prog);
8 }

Construct argument for seccomp()
Install filter

LPC 2015 (C) 2015 Michael Kerrisk BPF programs 37 / 54

Example: seccomp/seccomp_deny_open.c

Upon running the program, we see:
$./ seccomp_deny_open
Bad system call # Message printed by shell
$ echo $? # Display exit status of last command
159

“Bad system call” indicates process was killed by SIGSYS
Exit status of 159 (== 128 + 31) also indicates termination
as though killed by SIGSYS

Exit status of process killed by signal is 128 + signum
SIGSYS is signal number 31 on this architecture

LPC 2015 (C) 2015 Michael Kerrisk BPF programs 38 / 54

Example: seccomp/seccomp_control_open.c

A more sophisticated example
Filter based on flags argument of open()

O_CREAT specified ⇒ kill process
O_WRONLY or O_RDWR specified ⇒ cause open() to fail with
ENOTSUP error

LPC 2015 (C) 2015 Michael Kerrisk BPF programs 39 / 54

Example: seccomp/seccomp_control_open.c

struct sock_filter filter [] = {
BPF_STMT (BPF_LD | BPF_W | BPF_ABS ,

(offsetof (struct seccomp_data , arch))),
BPF_JUMP (BPF_JMP | BPF_JEQ | BPF_K ,

AUDIT_ARCH_X86_64 , 1, 0),
BPF_STMT (BPF_RET | BPF_K , SECCOMP_RET_KILL),

BPF_STMT (BPF_LD | BPF_W | BPF_ABS ,
(offsetof (struct seccomp_data , nr))),

BPF_JUMP (BPF_JMP | BPF_JEQ | BPF_K , __NR_open , 1, 0),
BPF_STMT (BPF_RET | BPF_K , SECCOMP_RET_ALLOW),

Load architecture and test for expected value
Load system call number
Test if system call number is __NR_open

True: skip next instruction
False: skip 0 instructions ⇒ permit all other syscalls

LPC 2015 (C) 2015 Michael Kerrisk BPF programs 40 / 54

Example: seccomp/seccomp_control_open.c

BPF_STMT (BPF_LD | BPF_W | BPF_ABS ,
(offsetof (struct seccomp_data , args [1]))),

BPF_JUMP (BPF_JMP | BPF_JSET | BPF_K , O_CREAT , 0, 1),
BPF_STMT (BPF_RET | BPF_K , SECCOMP_RET_KILL),

Load second argument of open() (flags)
Test if O_CREAT bit is set in flags

True: skip 0 instructions ⇒ kill process
False: skip 1 instruction

LPC 2015 (C) 2015 Michael Kerrisk BPF programs 41 / 54

Example: seccomp/seccomp_control_open.c

BPF_JUMP (BPF_JMP | BPF_JSET | BPF_K ,
O_WRONLY | O_RDWR , 0, 1),

BPF_STMT (BPF_RET | BPF_K ,
SECCOMP_RET_ERRNO |

(ENOTSUP & SECCOMP_RET_DATA)),

BPF_STMT (BPF_RET | BPF_K , SECCOMP_RET_ALLOW)
};

Test if O_WRONLY or O_RDWR are set in flags
True: cause open() to fail with ENOTSUP error in errno
False: allow open() to proceed

LPC 2015 (C) 2015 Michael Kerrisk BPF programs 42 / 54

Example: seccomp/seccomp_control_open.c

int main(int argc , char ** argv) {
prctl(PR_SET_NO_NEW_PRIVS , 1, 0, 0, 0);
install_filter ();

if (open("/tmp/a", O_RDONLY) == -1)
perror ("open1");

if (open("/tmp/a", O_WRONLY) == -1)
perror ("open2");

if (open("/tmp/a", O_RDWR) == -1)
perror ("open3");

if (open("/tmp/a", O_CREAT | O_RDWR , 0600) == -1)
perror ("open4");

exit(EXIT_SUCCESS);
}

Test open() calls with various flags

LPC 2015 (C) 2015 Michael Kerrisk BPF programs 43 / 54

Example: seccomp/seccomp_control_open.c

$./ seccomp_control_open
open2: Operation not supported
open3: Operation not supported
Bad system call
$ echo $?
159

First open() succeeded
Second and third open() calls failed

Kernel produced ENOTSUP error for call
Fourth open() call caused process to be killed

LPC 2015 (C) 2015 Michael Kerrisk BPF programs 44 / 54

Outline

1 Introductions
2 Introduction and history
3 Seccomp filtering and BPF
4 Constructing seccomp filters
5 BPF programs
6 Further details on seccomp filters
7 Applications, tools, and further information

Installing multiple filters

If existing filters permit prctl() or seccomp(), further filters
can be installed
All filters are always executed, in reverse order of
registration
Each filter yields a return value
Value returned to kernel is first seen action of highest
priority (along with accompanying data)

SECCOMP_RET_KILL (highest priority)
SECCOMP_RET_TRAP

SECCOMP_RET_ERRNO

SECCOMP_RET_TRACE

SECCOMP_RET_ALLOW (lowest priority)

LPC 2015 (C) 2015 Michael Kerrisk Further details on seccomp filters 46 / 54

fork() and execve() semantics

If seccomp filters permit fork() or clone(), then child inherits
parents filters
If seccomp filters permit execve(), then filters are preserved
across execve()

LPC 2015 (C) 2015 Michael Kerrisk Further details on seccomp filters 47 / 54

Cost of filtering, construction of filters

Installed BPF filter(s) are executed for every system call
⇒ there’s a performance cost

Example on x86-64:
Use our “deny open” seccomp filter

Requires 6 BPF instructions / permitted syscall

Call getppid() repeatedly (one of cheapest syscalls)
+25% execution time

(Looks relatively high because getppid() is a cheap syscall)

Obviously, order of filtering rules can affect performance
Construct filters so that most common cases yield shortest
execution paths
If handling many different system calls, binary chop
techniques can give O(logN) performance

LPC 2015 (C) 2015 Michael Kerrisk Further details on seccomp filters 48 / 54

Outline

1 Introductions
2 Introduction and history
3 Seccomp filtering and BPF
4 Constructing seccomp filters
5 BPF programs
6 Further details on seccomp filters
7 Applications, tools, and further information

Applications

Possible applications:
Building sandboxed environments

Whitelisting usually safer than blacklisting
Default treatment: block all system calls
Then allow only a limited set of syscall / argument
combinations

Various examples mentioned earlier
Failure-mode testing

Place application in environment where unusual /
unexpected failures occur
Blacklist certain syscalls / argument combinations to
generate failures

LPC 2015 (C) 2015 Michael Kerrisk Applications, tools, and further information 50 / 54

Tools: libseccomp

High-level API for kernel creating seccomp filters
https://github.com/seccomp/libseccomp
Initial release: 2012

Simplifies various aspects of building filters
Eliminates tedious/error-prone tasks such as changing
branch instruction counts when instructions are inserted
Abstract architecture-dependent details out of filter creation
Can output generated code in binary (for seccomp filtering)
or human-readable form (“pseudofilter code”)
Don’t have full control of generated code, but can give hints
about which system calls to prioritize in generated code

http://lwn.net/Articles/494252/
Fully documented with man pages that contain examples (!)

LPC 2015 (C) 2015 Michael Kerrisk Applications, tools, and further information 51 / 54

Other tools

bpfc (BPF compiler)
Compiles assembler-like BPF programs to byte code
Part of netsniff-ng project (http://netsniff-ng.org/)

LLVM has a BPF back end (merged Jan 2015)
Compiles subset of C to BPF

C dialect; does not provide: loops, global variables, FP
numbers, vararg functions, passing structs as args...
Examples in kernel source: samples/bpf/*_kern.c

In-kernel JIT (just-in-time) compiler
Compiles BPF binary to native machine code at load time

Execution speed up of 2x to 3x (or better, in some cases)

Disabled by default; enable by writing “1” to
/proc/sys/net/core/bpf_jit_enable

See bpf(2) man page

LPC 2015 (C) 2015 Michael Kerrisk Applications, tools, and further information 52 / 54

Resources

Kernel source files:
Documentation/prctl/seccomp_filter.txt,
Documentation/networking/filter.txt
http://outflux.net/teach-seccomp/

Shows handy trick for discovering which of an application’s
system calls don’t pass filtering

seccomp(2) man page
“Seccomp sandboxes and memcached example”

blog.viraptor.info/post/seccomp-sandboxes-and-memcached-example-part-1
blog.viraptor.info/post/seccomp-sandboxes-and-memcached-example-part-2

LPC 2015 (C) 2015 Michael Kerrisk Applications, tools, and further information 53 / 54

Thanks!
mtk@man7.org

Slides at http://man7.org/conf/

Linux/UNIX system programming training (and more)
http://man7.org/training/

The Linux Programming Interface, http://man7.org/tlpi/

	Seccomp: limiting the kernel attack surface
	Introductions
	Introduction and history
	Seccomp filtering and BPF
	Constructing seccomp filters
	BPF programs
	Further details on seccomp filters
	Applications, tools, and further information

