NDC TechTown

An introduction to control
groups (cgroups) v2

Michael Kerrisk, man7.org © 2021

mtk@man7.org

20 October 2021, Kongsberg, Norway

Outline

~NOo bk N

Introduction

Preamble

What are control groups?

An example: the pids controller

A quick survey of the controllers

Enabling and disabling controllers

Managing controllers to differing levels of granularity

(@)}

17
23
32
39

Outline

1 Introduction

Who am |7

@ Maintainer of Linux man-pages project since 2004
e 1060 pages, mainly for system calls & C library functions
o https://www.kernel.org/doc/man-pages/

o (I wrote a lot of those pages...)
o (Comaintainer since 2020)
@ Author of a book on the Linux programming interface
o http://man7.org/tlpi/

o Trainer/writer/engineer
THE LINUX

http . //man7 . org/training/ PROGRAMMING
INTERFACE

o Email: mtk@man7.org
Twitter: @mkerrisk

man7.org

©2021, Michael Kerrisk @mbkerrisk An introduction to control groups (cgroups) v2 4 /42

Outline

e Topics:
e What are control groups?
o An example (pids controller)
o A survey of the controllers
e Enabling and disabling controllers
e Managing controllers to different levels of granularity

@ Questions: at the end

man?7.org

©2021, Michael Kerrisk ©mkerrisk An introduction to control groups (cgroups) v2

5/ 42

Outline

2 Preamble

Some history

(7]

2006/2007, “Process Containers” @ Google = Cgroups v1

Jan 2008: initial mainline kernel release (Linux 2.6.24)

o Three resource controllers (all CPU-related) in initial release

(7]

(7]

Subsequently, other controllers are added

e memory, devices, freezer, net_cls, blkio...

(]

But a few years of uncoordinated design leads to a mess
o Decentralized design fails us... again

©

Sep 2012: work has already begun on cgroups v2...

man?7.org

©2021, Michael Kerrisk @mbkerrisk An introduction to control groups (cgroups) v2 7/ 42

Some history

(7]

Sep 2015: systemd adds cgroup v2 support

(7]

Mar 2016: cgroups v2 officially released (Linux 4.5)
o But, lacks feature parity with cgroups v1

(7]

Jan 2018: cpu controller is released for cgroups v2
o (Absence had been major roadblock to adoption of v2)

Oct 2019: Fedora 31 is first distro to move to v2-by-default

(]

2020: Docker 20.10 gets cgroups v2 support

2021: other distros move to v2-by-default
o Debian 11.0 (Aug 2021); Ubuntu 21.10 (Oct 2021); Arch

©

man?7.org

©2021, Michael Kerrisk @mbkerrisk An introduction to control groups (cgroups) v2 8 /42

We are at a tipping point

@ A lot of existing infrastructure depends on cgroups vl
e But a lot of migration work has already been done

@ So, let's ignore v1 and focus on v2

man7.org

©2021, Michael Kerrisk ©mkerrisk An introduction to control groups (cgroups) v2

9/ 42

Booting to cgroups v2

@ You may be on a distro that uses cgroups vl by default; if

so, you need to reboot....

o Because we can’t simultaneously use a controller in both vl

and v2

o If this shows a value > 1, then you need to reboot:

$ grep -c cgroup /proc/mounts # Count cgroup mounts

o Either: use kernel boot parameter, cgroup_no_v1:
e cgroup_no_vl=all =- disable all vl controllers

@ Or: use systemd.unified_cgroup_hierarchy boot
parameter

e = systemd abandons its “hybrid” mode, uses just v2
o (Hybrid mode uses a mixture of cgroups v1 and v2)

man?7.org

©2021, Michael Kerrisk ©mkerrisk An introduction to control groups (cgroups) v2

10 / 42

The cgroup? filesystem

@ On boot, systemd mounts v2 hierarchy at /sys/fs/cgroup
o (or /sys/fs/cgroup/unified)

@ The (pseudo)filesystem type is “cgroup2”
o In cgroups v1, filesystem type is “cgroup”

@ The cgroups v2 mount is sometimes known as the “unified”
hierarchy
o Because all controllers are associated with a single hierarchy

o By contrast, in vl there were multiple hierarchies

man7.org

©2021, Michael Kerrisk @mbkerrisk An introduction to control groups (cgroups) v2 11 / 42

Outline

3 What are control groups?

12

What are control groups?

@ Two principle components:
e A mechanism for hierarchically grouping processes

o A set of controllers (kernel components) that manage,
control, or monitor processes in cgroups

@ Interface is via a pseudo-filesystem

@ Cgroup manipulation takes form of filesystem operations,
which might be done:

o Via shell commands
o Programmatically
o Via management daemon (e.g., systemd)

o Via your container framework’s tools (e.g., LXC, Docker)

man?7.org

©2021, Michael Kerrisk @mbkerrisk An introduction to control groups (cgroups) v2 13 / 42

What do cgroups allow us to do?

@ Limit resource usage of group

o E.g., limit % of CPU available to group; limit amount of
memory that group can use

Prioritize group for resource allocation
o E.g., favor the group for network bandwidth

(]

Resource accounting
o Measure resources used by processes

o Freeze a group
o Freeze, restore, and checkpoint a group

And more...

(]

man?7.org

©2021, Michael Kerrisk @mbkerrisk An introduction to control groups (cgroups) v2 14 / 42

Terminology

@ Control group: a group of processes that are bound
together for purpose of resource management

o (Resource) controller: kernel component that controls or
monitors processes in a cgroup

o E.g., memory controller limits memory usage; cpu controller
limits CPU usage

o Also known as subsystem
o (But that term is rather ambiguous because so generic)

@ Cgroups are arranged in a hierarchy
e Each cgroup can have zero or more child cgroups

o Child cgroups inherit control settings from parent

man?7.org

©2021, Michael Kerrisk @mbkerrisk An introduction to control groups (cgroups) v2 15 / 42

Filesystem interface

o Cgroup filesystem directory structure defines cgroups +
cgroup hierarchy

o l.e., use mkdir(2) / rmdir(2) (or equivalent shell
commands) to create cgroups

e Each subdirectory contains automagically created files
e Some files are used to manage the cgroup itself

o Other files are controller-specific

o Files in cgroup are used to:
o Define/display membership of cgroup

o Control behavior of processes in cgroup

o Expose information about processes in cgroup (e.g.,
resource usage stats)

man?7.org

©2021, Michael Kerrisk @mbkerrisk An introduction to control groups (cgroups) v2 16 / 42

Outline

4 An example: the pids controller

17

Example: the pids controller

@ pids (“process number") controller allows us to limit
number of PIDs in cgroup (prevent fork() bombs!)

o Create new cgroup, and place shell's PID in that cgroup:

mkdir /sys/fs/cgroup/mygrp
echo $$
17273

echo $$ > /sys/fs/cgroup/mygrp/cgroup.procs

e cgroup.procs defines/displays PIDs in cgroup
o (Note '#' prompt = all commands done as superuser)

@ Moving a PID into a group automatically removes it from
group of which it was formerly a member

o l.e., a process is always a member of exactly one group in
the hierarchy

man?7.org

©2021, Michael Kerrisk @mbkerrisk An introduction to control groups (cgroups) v2 18 / 42

Example: the pids controller

@ Can read cgroup.procs to see PIDs in group:

cat /sys/fs/cgroup/mygrp/cgroup.procs
17273
20591

o Where did PID 20591 come from?

o PID 20591 is cat command, created as a child of shell
o Child process inherits cgroup membership from parent

@ pids.current shows how many processes are in group:

cat /sys/fs/cgroup/mygrp/pids.current
2

o Two processes: shell + cat

man?7.org

©2021, Michael Kerrisk ©mkerrisk An introduction to control groups (cgroups) v2

19 / 42

Example: the pids controller

@ We can limit number of PIDs in group using pids.max file:

echo 5 > /sys/fs/cgroup/mygrp/pids.max

for a in $(seq 1 5); do sleep 60 & done

[1] 21283

[2] 21284

[3] 21285

[4] 21286

bash: fork: retry: Resource temporarily unavailable
bash: fork: retry: Resource temporarily unavailable
bash: fork: retry: Resource temporarily unavailable
bash: fork: Resource temporarily unavailable

o (The shell retries a few times and then gives up)

o From a different shell, examine pids. current:

$ cat /sys/fs/cgroup/mygrp/pids.current
5

o Not possible from first shell (can't create more processes)

man?7.org

©2021, Michael Kerrisk @mbkerrisk An introduction to control groups (cgroups) v2 20 / 42

Discovering a process's cgroup membership

@ /proc/PID/cgroup shows cgroup membership(s) of a
process:

$ cat /proc/17273/cgroup
0::/mygrp

o Membership is shown as pathname relative to mount point

e 0:: is entry for cgroup v2 hierarchy

o (In systemd's hybrid mode, we would also see entries for
memberships in v1 hierarchies)

man?7.org

©2021, Michael Kerrisk @mbkerrisk An introduction to control groups (cgroups) v2 21 / 42

Destroying a cgroup

@ A cgroup that has no child cgroups and no member
processes can be destroyed by removing directory

@ Returning to our first shell:

rmdir mygrp

rmdir: failed to remove 'mygrp/': Device or resource busy

echo $$ > /sys/fs/cgroup/cgroup.procs # Move to root cgroup
rmdir mygrp # Succeeds

o First attempt failed because shell is a member of cgroup we
are trying to remove

e So, we move shell to root cgroup and repeat

o Note: it is not necessary (or possible!) to delete files inside
directory beforehand

man?7.org

©2021, Michael Kerrisk @mbkerrisk An introduction to control groups (cgroups) v2 22 /42

Outline

5 A quick survey of the controllers

23

Cgroups v2 controllers

@ Let’s get a flavor of what kinds of control are possible

@ Documentation/admin-guide/cgroup-v2.rst documents
v2 controllers

man7.org

©2021, Michael Kerrisk @mbkerrisk An introduction to control groups (cgroups) v2 24 / 42

Controllers available in cgroups v2

@ cpu: limit and measure CPU usage by a group of processes;
two modes of operation:

o Proportional-weight division (default)
o Bandwidth control

o Can intermingle these modes at different levels in hierarchy

man?7.org

©2021, Michael Kerrisk @mbkerrisk An introduction to control groups (cgroups) v2 25 / 42

cpu controller: proportional-weight division

[\

A B C
shares=1024 shares=2048 shares=1024

\
\
X Y
shares=1000 shares=4000

@ cpu.weight file in each group defines relative share of CPU
received by that group

@ Processes in B get m = % of CPU time

@ Processes in A and C each get tgyrssaarioss = 4 of CPU time

@ Processes in X get 1024+§gig+1024 - 100%)?2000 = % - % = % of CPU time

@ Processes in Y get 1o57ra0mario57 * To00a655 = 5 © & = 15 of CPU time
man7.org

©2021, Michael Kerrisk @mbkerrisk An introduction to control groups (cgroups) v2 26 / 42

cpu controller: bandwidth control

A
quota=50000
P Q R
quota=20000 quota=40000 quota=10000

quota=30000

e Bandwidth control strictly limits CPU (quota/period)
granted to a group (even if no other competitors for CPU)

Assume that period is 100’000 in all cgroups
Processes under A will get maximum of 50% of (one) CPU

Processes under Q will get maximum of 40% of CPU

®© 6 o o

Processes under X will get maximum of 30% of CPU

@ Sibling cgroups under A are oversubscribed (won't get 70% of CPU)

man?7.org

©2021, Michael Kerrisk @mbkerrisk An introduction to control groups (cgroups) v2 27 / 42

Controllers available in cgroups v2

@ cpuset: control CPU and memory affinity
o Pin cgroup to one CPU/subset of CPUs (or memory nodes)

e Dynamically manage placement of application components
on systems with large numbers of CPUs and memory nodes

o Non-uniform memory access (NUMA) systems

man?7.org

©2021, Michael Kerrisk @mbkerrisk An introduction to control groups (cgroups) v2 28 / 42

Controllers available in cgroups v2

@ memory: limit memory usage per cgroup + memory usage

accounting

o Soft limits influence page reclaim under memory pressure

o Hard limits trigger per-cgroup OOM killer

o Alternatively, can arrange for notifications to user-space
supervisor process in event of low-memory situation
@ io: limit 1/O on block devices
o HDDs, SSDs, USB, etc.

o Policies:
@ Proportional-weight division of device bandwidth

o Bandwidth control (throttling/hard limit)

o Can set up per-device policies

man?7.org

©2021, Michael Kerrisk ©mkerrisk An introduction to control groups (cgroups) v2

29 / 42

Controllers available in cgroups v2

@ devices: limitwhich devices members of cgroup may access

o No interfaces files; instead control is done by attaching
eBPF program to cgroup

e Each attempt to open/create a device is gated by decision
that eBPF program returns to kernel

o Example use: inside container, disallow access to devices
other than /dev/{null,zero,full,random,tty}

@ Control of network traffic

o iptables allows eBPF filters that hook on cgroup v2
pathnames to manage NW traffic on a per-cgroup basis

man?7.org

©2021, Michael Kerrisk @mbkerrisk An introduction to control groups (cgroups) v2 30 / 42

Controllers available in cgroups v2

@ pids: limit number of PIDs in cgroup
o Prevent fork bombs

o freezer: freeze (suspend) and thaw (resume) a group of
processes

o Useful for container migration and checkpoint/restore

@ And the rest:
o perf_event: carry out per-cgroup perf monitoring
o Allows perf monitoring of a container...

e rdma: control use of RDMA resources per cgroup

o hugetlb: limit usage of “huge pages” per cgroup

man?7.org

©2021, Michael Kerrisk ©mkerrisk An introduction to control groups (cgroups) v2

31/ 42

Outline

6 Enabling and disabling controllers

32

Enabling and disabling controllers

@ Each cgroup v2 directory contains two files:
e cgroup.controllers: lists controllers that are available
in this cgroup

e cgroup.subtree_control: used to list/modify set of
controllers that are enabled in this cgroup

o Always a subset of cgroup.controllers

o Together, these files allow different controllers to be
managed to different levels of granularity in v2 hierarchy

man?7.org

©2021, Michael Kerrisk @mbkerrisk An introduction to control groups (cgroups) v2 33 /42

Available controllers: cgroup.controllers

@ cgroup.controllers lists the controllers that are available
in a cgroup:

$ cat /sys/fs/cgroup/cgroup.controllers
cpuset cpu io memory hugetlb pids

@ A controller may not be available because:
e The same controllers is already in use in cgroups vl

o Cgroups vl and v2 can coexist, but a controller can be used
in only one version

o Must unmount controller in v1 (often easier to reboot...)
o The controller is not enabled in the parent cgroup

@ Certain so-called implicit controllers are always available,
and are not listed in cgroup.controllers

o E.g., freezer, perf_event

man?7.org

©2021, Michael Kerrisk @mbkerrisk An introduction to control groups (cgroups) v2 34 /42

Enabling controllers: cgroup.subtree_control

@ cgroup.subtree_control is used to show or modify the
set of controllers that are available in a cgroup:

cd /sys/fs/cgroup/
cat cgroup.subtree_control
memory pids

o Contents of cgroup.subtree_control are always a subset
of cgroup.controllers

o l.e., can't enable controller that is not available in a cgroup

@ Controllers are enabled/disabled by writing to this file:

echo '+cpu' > cgroup.subtree_control # Enable 'cpu' controller
cat cgroup.subtree_control

cpu memory pids

echo '-cpu' > cgroup.subtree_control # Disable 'cpu' controller
cat cgroup.subtree_control

memory pids

man?7.org

©2021, Michael Kerrisk @mbkerrisk An introduction to control groups (cgroups) v2 35 /42

Enabling controllers: cgroup.subtree_control

@ Enabling a controller in cgroup.subtree_control:
o Allows resource to be controlled in child cgroups

o Creates controller-specific attribute files in each child
directory

@ Attribute files in child cgroups are used by process
managing parent cgroup to manage resource allocation
into child cgroups

o This is a significant difference from cgroups v1

man?7.org

©2021, Michael Kerrisk @mbkerrisk An introduction to control groups (cgroups) v2 36 / 42

cgroup.subtree_control example

@ Currently, cpu controller is not enabled in root cgroup:

cd /sys/fs/cgroup/
cat cgroup.subtree_control
memory pids

o Create child cgroup and list cpu. * files:

mkdir grpl
1ls grpl/cpu.*
grpl/cpu.pressure grpl/cpu.stat

o (These two files show CPU-related statistics and are present
in every cgroup)
@ Enabling cpu controller in parent cgroup causes controller
interface files to appear in child cgroup:

echo '+cpu' > cgroup.subtree_control

1ls grpl/cpu.*

grpl/cpu.max grpl/cpu.stat grpl/cpu.weight.nice
grpl/cpu.pressure grpl/cpu.weight

man?7.org

©2021, Michael Kerrisk @mbkerrisk An introduction to control groups (cgroups) v2 37 /42

cgroup.subtree_control example

o After enabling controller in parent cgroup, we can limit
resources in child cgroup...

@ Set hard CPU limit of 50% in child cgroup:

‘# echo '50000 100000' > grpl/cpu.max ‘

@ In another window, we start a program that burns CPU time
and displays statistics; and we move it into grpi:

‘# echo 6445 > grpl/cgroup.procs # 6445 is PID of burner process ‘

@ In the other terminal, we see:

$./cpu_burner

[6445] 1: elapsed/cpu = 1.001; Y%CPU = 99.862

[6445] 2: elapsed/cpu = 1.002; %CPU = 99.835

té445] 6: elapsed/cpu = 1.197; %CPU = 83.522

[6445] 7: elapsed/cpu = 2.000; %CPU = 50.000

[6445] 8: elapsed/cpu = 2.000; %CPU = 50.000
man?7.org

©2021, Michael Kerrisk @mbkerrisk An introduction to control groups (cgroups) v2 38 /42

Outline

7 Managing controllers to differing levels of granularity 39

Managing controllers to differing levels of granularity

@ A controller is available in child cgroup only if it is
enabled in parent cgroup:

cat cgroup.controllers
cpuset cpu io memory hugetlb pids
cat cgroup.subtree_control

cpu memory pids
cat grpl/cgroup.controllers

cpu memory pids

e cpuset, io, and hugetlb are not available in grp1

@ In grpl, none of the available controllers is initially enabled,
so no controllers are available at next level:

cat grpl/cgroup.controllers
cpu memory pids

cat grpl/cgroup.subtree_control # Empty
mkdir grpl/{grp10,grpi1} # Make grandchild cgroups
cat grpl/grp2/cgroup.controllers # Empty

man?7.org

©2021, Michael Kerrisk @mbkerrisk An introduction to control groups (cgroups) v2 40 / 42

Managing controllers to differing levels of granularity

o If we enable cpu in grpl, it becomes available at next level

echo '+cpu' > grpl/cgroup.subtree_control
cat grpl/grpl0/cgroup.controllers
cpu

o And cpu interface files appear in grp1/{grp10,grpi1}
@ Here, cpu is being managed at finer granularity than memory

o We can make distinct cpu allocation decisions for processes

in grpl0 vs processes in grpll
o But we can't make distinct memory allocation decisions
@ grpl0 and grpl1l will share memory allocation from grpl
@ We did this by design (we don't want to manage every
resource to same level of granularity):
e We want distinct CPU allocations in grp10 and grpil
o We want grp10 and grpl1l to share a memory allocation

man?7.org

©2021, Michael Kerrisk @mbkerrisk An introduction to control groups (cgroups) v2 41 / 42

Thanks!

Michael Kerrisk, Trainer and Consultant
http://man7.org/training/

mtk@man7.org ©mkerrisk

Slides at http://man7.org/conf/
Source code at http://man7.org/tlpi/code/

THE LINUX
PROGRAMMING

	An introduction to control groups (cgroups) v2 1
	Introduction 3
	Preamble 6
	What are control groups? 12
	An example: the pids controller 17
	A quick survey of the controllers 23
	Enabling and disabling controllers 32
	Managing controllers to differing levels of granularity 39

