NAME | LIBRARY | SYNOPSIS | DESCRIPTION | ATTRIBUTES | STANDARDS | HISTORY | EXAMPLES | SEE ALSO |
|
|
catanh(3) Library Functions Manual catanh(3)
catanh, catanhf, catanhl - complex arc tangents hyperbolic
Math library (libm, -lm)
#include <complex.h> double complex catanh(double complex z); float complex catanhf(float complex z); long double complex catanhl(long double complex z);
These functions calculate the complex arc hyperbolic tangent of z. If y = catanh(z), then z = ctanh(y). The imaginary part of y is chosen in the interval [-pi/2,pi/2]. One has: catanh(z) = 0.5 * (clog(1 + z) - clog(1 - z))
For an explanation of the terms used in this section, see attributes(7). ┌──────────────────────────────────────┬───────────────┬─────────┐ │Interface │ Attribute │ Value │ ├──────────────────────────────────────┼───────────────┼─────────┤ │catanh(), catanhf(), catanhl() │ Thread safety │ MT-Safe │ └──────────────────────────────────────┴───────────────┴─────────┘
C11, POSIX.1-2008.
glibc 2.1. C99, POSIX.1-2001.
/* Link with "-lm" */ #include <complex.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> int main(int argc, char *argv[]) { double complex z, c, f; if (argc != 3) { fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]); exit(EXIT_FAILURE); } z = atof(argv[1]) + atof(argv[2]) * I; c = catanh(z); printf("catanh() = %6.3f %6.3f*i\n", creal(c), cimag(c)); f = 0.5 * (clog(1 + z) - clog(1 - z)); printf("formula = %6.3f %6.3f*i\n", creal(f), cimag(f)); exit(EXIT_SUCCESS); }
atanh(3), cabs(3), cimag(3), ctanh(3), complex(7)
Linux man-pages 6.04 2023-03-30 catanh(3)
Pages that refer to this page: atanh(3), ctanh(3), complex(7)