
Linux/UNIX

System Programming

Fundamentals

Michael Kerrisk

man7.org

NDC TechTown; August 2020

©2020, man7.org Training and Consulting /
Michael Kerrisk. All rights reserved.

These training materials have been made available for personal,
noncommercial use. Except for personal use, no part of these training
materials may be printed, reproduced, or stored in a retrieval system. These
training materials may not be redistributed by any means, electronic,
mechanical, or otherwise, without prior written permission of the author.
These training materials may not be used to provide training to others
without prior written permission of the author.

Every effort has been made to ensure that the material contained herein is
correct, including the development and testing of the example programs.
However, no warranty is expressed or implied, and the author shall not be
liable for loss or damage arising from the use of these programs. The
programs are made available under Free Software licenses; see the header
comments of individual source files for details.

For information about this course, visit
http://man7.org/training/.

For inquiries regarding training courses, please contact us at
training@man7.org.

Please send corrections and suggestions for improvements to this
course material to training@man7.org.

For information about The Linux Programming Interface, please
visit http://man7.org/tlpi/.

Short table of contents

1 Course Introduction 1-1

2 Fundamental Concepts 2-1

3 File I/O and Files 3-1

4 Directories and Links 4-1

5 Processes 5-1

6 Signals: Introduction 6-1

7 Signals: Signal Handlers 7-1

8 Process Lifecycle 8-1

Short table of contents

9 System Call Tracing with strace 9-1

10 Pipes and FIFOs 10-1

11 Alternative I/O Models 11-1

12 Wrapup 12-1

Detailed table of contents

1 Course Introduction 1-1
1.1 Course overview 1-3
1.2 Course materials and resources 1-9
1.3 Introductions 1-14

2 Fundamental Concepts 2-1
2.1 System calls and library functions 2-3
2.2 Error handling 2-10
2.3 System data types 2-17
2.4 Notes on code examples 2-22

3 File I/O and Files 3-1
3.1 File I/O overview 3-3
3.2 open(), read(), write(), and close() 3-7
3.3 The file offset and lseek() 3-21
3.4 Relationship between file descriptors and open files 3-26
3.5 Duplicating file descriptors 3-35
3.6 File status flags (and fcntl()) 3-41
3.7 Retrieving file information: stat() 3-49

4 Directories and Links 4-1

Detailed table of contents

4.1 Directories and (hard) links 4-3
4.2 Symbolic links 4-8
4.3 Hard links: system calls and library functions 4-14
4.4 Symbolic links: system calls and library functions 4-20
4.5 Current working directory 4-23
4.6 Operating relative to a directory (openat() etc.) 4-27
4.7 Scanning directories 4-38

5 Processes 5-1
5.1 Process IDs 5-3
5.2 Process memory layout 5-6
5.3 Command-line arguments 5-9
5.4 The environment list 5-11
5.5 The /proc filesystem 5-16

6 Signals: Introduction 6-1
6.1 Overview of signals 6-3
6.2 Signal dispositions 6-8
6.3 Signal handlers 6-16

Detailed table of contents

6.4 Useful signal-related functions 6-21
6.5 Signal sets, the signal mask, and pending signals 6-25

7 Signals: Signal Handlers 7-1
7.1 Designing signal handlers 7-3
7.2 Async-signal-safe functions 7-7
7.3 Interrupted system calls 7-19
7.4 SA_SIGINFO signal handlers 7-23
7.5 The signal trampoline 7-27

8 Process Lifecycle 8-1
8.1 Introduction 8-3
8.2 Creating a new process: fork() 8-6
8.3 Process termination 8-12
8.4 Monitoring child processes 8-18
8.5 Orphans and zombies 8-29
8.6 The SIGCHLD signal 8-37
8.7 Executing programs: execve() 8-41

9 System Call Tracing with strace 9-1

Detailed table of contents

9.1 Getting started 9-3
9.2 Tracing child processes 9-10
9.3 Filtering strace output 9-14
9.4 System call tampering 9-20
9.5 Further strace options 9-26

10 Pipes and FIFOs 10-1
10.1 Overview 10-3
10.2 Creating and using pipes 10-8
10.3 Connecting filters with pipes 10-20
10.4 FIFOs 10-33

11 Alternative I/O Models 11-1
11.1 Overview 11-3
11.2 Nonblocking I/O 11-5
11.3 Signal-driven I/O 11-11
11.4 I/O multiplexing: poll() 11-14
11.5 Problems with poll() and select() 11-30
11.6 The epoll API 11-33

Detailed table of contents

11.7 epoll events 11-43
11.8 epoll: edge-triggered notification 11-57
11.9 epoll: API quirks 11-68
11.10 Event-loop programming 11-73

12 Wrapup 12-1
12.1 Wrapup 12-3

Linux/UNIX System Programming Fundamentals

Course Introduction

Michael Kerrisk, man7.org © 2020

mtk@man7.org

NDC TechTown
August 2020

Outline

1 Course Introduction 1-1
1.1 Course overview 1-3
1.2 Course materials and resources 1-9
1.3 Introductions 1-14

Outline

1 Course Introduction 1-1
1.1 Course overview 1-3
1.2 Course materials and resources 1-9
1.3 Introductions 1-14

Course prerequisites

Prerequisites

(Good) reading knowledge of C

Can log in to Linux / UNIX and use basic commands

Knowledge of make(1) is helpful

(Can do a short tutorial during first practical session for
those new to make)

Assumptions
You are familiar with commonly used parts of standard C
library

e.g., stdio and malloc packages

You know how to operate the compiler / interpreter for
your preferred language

System Programming Fundamentals ©2020, Michael Kerrisk Course Introduction 1-4 §1.1

Course goals

Aimed at programmers building/understanding low-level
applications

Gain strong understanding of programming API that kernel
presents to user-space

System calls

Relevant C library functions

Other interfaces (e.g., /proc)

Necessarily, we sometimes delve into inner workings of
kernel

(But... not an internals course)

Course topics

Course flyer

For more detail, see TOC in course books

System Programming Fundamentals ©2020, Michael Kerrisk Course Introduction 1-5 §1.1

Lab sessions

Lots of lab sessions...

For programming exercises, you can use any suitable
programming language in which you are proficient

C/C++ (easiest...)

Go, D, Rust, & other languages that compile to native
machine code

Most features can also be exercised from scripting
languages such as Python, Ruby, and Perl

For many exercises, I provide templates for the solutions

Filenames: ex.*.c

Look for “FIXMEs” to see what parts you must complete

B You will need to edit the corresponding Makefile to
add a new target for the executable

System Programming Fundamentals ©2020, Michael Kerrisk Course Introduction 1-6 §1.1

Lab sessions

Pair programming is strongly encouraged!
Pairs typically get through practical sessions faster

⇒ we will go faster as a group, and cover more topics

Read each exercise thoroughly before starting

Past experience has shown me the traps that people often
fall into with various exercises

⇒ exercise descriptions often include important hints

Solutions will be mailed out shortly after end of course

Lab sessions are not instructor down time...

⇒ One-on-one questions about course material or exercises

Looking for homework?

⇒ Chapters usually have additional exercises

System Programming Fundamentals ©2020, Michael Kerrisk Course Introduction 1-7 §1.1

Lab sessions: some thoughts on building code

Many warnings indicate real problems with your code; fix
them

And the “harmless errors” create noise that hides the
serious warnings; fix them

This is a good thing: cc -Werror

Treat all warnings as errors

Rather than writing lots of code before first compilation, use
a frequent edit-save-build cycle to catch compiler errors early

Try running the following in a separate window as you edit:

$ while inotifywait -q . ; do echo; make; done

inotifywait is provided in the inotify-tools package

(The echo command just injects some white space between
each build)

System Programming Fundamentals ©2020, Michael Kerrisk Course Introduction 1-8 §1.1

Outline

1 Course Introduction 1-1
1.1 Course overview 1-3
1.2 Course materials and resources 1-9
1.3 Introductions 1-14

Course materials

Source code tarball

Location sent by email

Unpacked source code is a Git repository; you can
commit/revert changes, etc.

Slides / course book

Kerrisk, M.T. 2010. The Linux Programming Interface
(TLPI), No Starch Press.

Slides frequently reference TLPI in bottom RHS corner

Further info on TLPI: http://man7.org/tlpi/

API changes since publication:
http://man7.org/tlpi/api_changes/

System Programming Fundamentals ©2020, Michael Kerrisk Course Introduction 1-10 §1.2

Other resources

POSIX.1-2001 / SUSv3: http://www.unix.org/version3/

POSIX.1-2008 / SUSv4: http://www.unix.org/version4/

Man pages

Section 2: system calls

Section 3: library functions

Latest version online at http://man7.org/linux/man-pages/

Latest tarball downloadable at
https://www.kernel.org/doc/man-pages/download.html

System Programming Fundamentals ©2020, Michael Kerrisk Course Introduction 1-11 §1.2

Books

General:
Stevens, W.R., and Rago, S.A. 2013. Advanced Programming in the UNIX
Environment (3rd edition). Addison-Wesley.

http://www.apuebook.com/

POSIX threads:

Butenhof, D.R. 1996. Programming with POSIX Threads. Addison-Wesley.

TCP/IP and network programming:

Fall, K.R. and Stevens, W.R. 2013. TCP/IP Illustrated, Volume 1: The Protocols
(2nd Edition). Addison-Wesley.

Stevens, W.R., Fenner, B., and Rudoff, A.M. 2004. UNIX Network
Programming,Volume 1 (3rd edition): The Sockets Networking API.
Addison-Wesley.

http://www.unpbook.com/

Stevens, W.R. 1999. UNIX Network Programming, Volume 2 (2nd edition):
Interprocess Communications. Prentice Hall.

http://www.kohala.com/start/unpv22e/unpv22e.html

Operating systems:
Tanenbaum, A.S., and Woodhull, A.S. 2006. Operating Systems: Design And
Implementation (3rd edition). Prentice Hall.

(The Minix book)

Comer, D. 2015. Operating System Design: The Xinu Approach (2nd edition)

System Programming Fundamentals ©2020, Michael Kerrisk Course Introduction 1-12 §1.2

Common abbreviations used in slides

The following abbreviations are sometimes used in the slides:

ACL: access control list

COW: copy-on-write

CV: condition variable

CWD: current working directory

EA: extended attribute

EOF: end of file

FD: file descriptor

FS: filesystem

FTM: feature test macro

GID: group ID

rGID, eGID, sGID, fsGID

KSE: kernel scheduling entity

IPC: interprocess communication

MQ: message queue

MQD: message queue descriptor

NS: namespace

OFD: open file description

PG: process group

PID: process ID

PPID: parent process ID

SHM: shared memory

SID: session ID

SEM: semaphore

SUS: Single UNIX specification

UID: user ID

rUID, eUID, sUID, fsUID

System Programming Fundamentals ©2020, Michael Kerrisk Course Introduction 1-13 §1.2

Outline

1 Course Introduction 1-1
1.1 Course overview 1-3
1.2 Course materials and resources 1-9
1.3 Introductions 1-14

Introductions: me

Programmer, trainer, writer

UNIX since 1987, Linux since mid-1990s

Active contributor to Linux
API review, testing, and documentation

API design and design review

Lots of testing, lots of bug reports, a few kernel patches

Maintainer of Linux man-pages project
Documents kernel-user-space + C library APIs

Contributor since 2000 (man-pages-1.31)

As maintainer: ≈20k commits, 188 releases since 2004

Author/coauthor of ≈430 out of ≈1040 man pages

Kiwi in .de
(mtk@man7.org, PGP: 4096R/3A35CE5E)

@mkerrisk (feel free to tweet about the course as we go...)

http://linkedin.com/in/mkerrisk

System Programming Fundamentals ©2020, Michael Kerrisk Course Introduction 1-15 §1.3

Introductions: you

In brief:

Who, where, ...

What you do with Linux

Previous knowledge/experience of course topics

Any special goals for the course

System Programming Fundamentals ©2020, Michael Kerrisk Course Introduction 1-16 §1.3

Linux/UNIX System Programming Fundamentals

Fundamental Concepts

Michael Kerrisk, man7.org © 2020

mtk@man7.org

NDC TechTown
August 2020

Outline

2 Fundamental Concepts 2-1
2.1 System calls and library functions 2-3
2.2 Error handling 2-10
2.3 System data types 2-17
2.4 Notes on code examples 2-22

Outline

2 Fundamental Concepts 2-1
2.1 System calls and library functions 2-3
2.2 Error handling 2-10
2.3 System data types 2-17
2.4 Notes on code examples 2-22

System calls

System call == controlled entry point into kernel code

Request to kernel to perform some task on caller’s behalf

syscalls(2) man page lists (nearly) all system calls

Documented in Section 2 of man pages (notation: stat(2))

[TLPI §3.1]

System Programming Fundamentals ©2020, Michael Kerrisk Fundamental Concepts 2-4 §2.1

Steps in the execution of a system call

1 Program calls wrapper function in C library

2 Wrapper function packages syscall arguments into hardware
registers

3 Wrapper function puts syscall number into a register

Each syscall has a unique number

4 Wrapper function traps to kernel mode

e.g., syscall instruction on x86-64 (or sysenter for 32-bit)

5 Kernel then executes syscall handler:

Checks validity of syscall number

Invokes service routine corresponding to syscall number

Checks arguments, does real work, returns a result status

Places syscall return value in a register

Switches back to user mode, passing control back to wrapper

E.g., sysret instruction on x86-64

6 Wrapper function examines syscall return value; on error, copies
return value to errno

System Programming Fundamentals ©2020, Michael Kerrisk Fundamental Concepts 2-5 §2.1

System calls are expensive!

109 calls to...

simple user-space function returning int ⇒ 1.5
seconds

getppid() system call ⇒ 41 340 seconds

(The page table isolation patches to mitigate Spectre, Meltdown, etc. have
caused a real performance hit on system calls)

(getppid(), which returns process ID of caller’s parent,
is one of the simplest system calls)

(Linux 5.4, x86-64; Intel Core i7-8850H; progconc/syscall_speed.c)

System Programming Fundamentals ©2020, Michael Kerrisk Fundamental Concepts 2-6 §2.1

Library functions

Library function == one of multitude of functions in
Standard C Library

Diverse range of tasks:
I/O

Dynamic memory allocation

Math

String processing

etc.

Documented in Section 3 of man pages (notation: exit(3))

Some library functions employ system calls

Many library functions make no use of system calls

C library provides (simple) wrapper functions for most
system calls

[TLPI §3.2]

System Programming Fundamentals ©2020, Michael Kerrisk Fundamental Concepts 2-7 §2.1

The C library

Each C environment has its own implementation of standard
C library

Linux has multiple implementations

GNU C library (glibc) is most widely used

Full implementation of POSIX APIs, plus many extensions

http://www.gnu.org/software/libc/

[TLPI §3.3]

System Programming Fundamentals ©2020, Michael Kerrisk Fundamental Concepts 2-8 §2.1

The C library

Other Linux C libraries target embedded platforms or the
creation of small binaries:

musl (“mussel”) libc (http://www.musl-libc.org/)

Highly active (release 1.0 in 2014)

http://wiki.musl-libc.org/wiki/Functional_differences_from_glibc

uclibc (http://www.uclibc.org/) [less active?]

dietlibc (http://www.fefe.de/dietlibc/) [inactive?]

A comparison: http://www.etalabs.net/compare_libcs.html

(C library on Android is Bionic)

We’ll presume the use of glibc

System Programming Fundamentals ©2020, Michael Kerrisk Fundamental Concepts 2-9 §2.1

Outline

2 Fundamental Concepts 2-1
2.1 System calls and library functions 2-3
2.2 Error handling 2-10
2.3 System data types 2-17
2.4 Notes on code examples 2-22

Error handling

Most system calls and library functions return a status
indicating success or failure

Most system calls:

Return –1 to indicate error

Place integer in global variable errno to indicate cause

Some library functions follow same convention

Often, we’ll omit return values from slides, where they follow
usual conventions

Check man pages for details

System Programming Fundamentals ©2020, Michael Kerrisk Fundamental Concepts 2-11 §2.2

Error handling

Return status should always be tested

B Inspect errno only if result status indicates failure

APIs do not reset errno to 0 on success

A successful call may modify errno (POSIX allows this)

System Programming Fundamentals ©2020, Michael Kerrisk Fundamental Concepts 2-12 §2.2

errno

When an API call fails, errno is set to indicate cause

Integer value, global variable

In multithreading environment, each thread has private
errno

Error numbers in errno are > 0

<errno.h> defines symbolic names for error numbers

define EPERM 1 /* Operation not permitted */
define ENOENT 2 /* No such file or directory */
define ESRCH 3 /* No such process */
...

errno(1) command can be used to search for errors by
number, name, or substring in textual message

Part of moreutils package

System Programming Fundamentals ©2020, Michael Kerrisk Fundamental Concepts 2-13 §2.2

Checking for errors

1 cnt = read(fd , buf , numbytes);
2
3 if (cnt == -1) { /* Was there an error ? */
4 if (errno == EINTR)
5 fprintf (stderr ,
6 "read () was interrupted by a signal \n");
7 else if (errno == EBADF)
8 fprintf (stderr ,
9 "read () given bad file descriptor \n");

10 else {
11 /* Some other error occurred */
12 }
13 }

System Programming Fundamentals ©2020, Michael Kerrisk Fundamental Concepts 2-14 §2.2

Displaying error messages

include <stdio.h>
void perror (const char *msg);

Outputs to stderr :

msg + ":" + string corresponding to value in errno

E.g., if errno contains EBADF, perror("close") would display:
close: Bad file descriptor

Simple error handling:

fd = open(pathname , flags , mode);
if (fd == -1) {

perror ("open");
exit(EXIT_FAILURE);

}

System Programming Fundamentals ©2020, Michael Kerrisk Fundamental Concepts 2-15 §2.2

Displaying error messages

include <string .h>
char * strerror (int errnum);

Returns an error string corresponding to error in errnum

Same string as printed by perror()

Unknown error number? ⇒ "Unknown error nnn"

Or NULL on some systems

System Programming Fundamentals ©2020, Michael Kerrisk Fundamental Concepts 2-16 §2.2

Outline

2 Fundamental Concepts 2-1
2.1 System calls and library functions 2-3
2.2 Error handling 2-10
2.3 System data types 2-17
2.4 Notes on code examples 2-22

System data types

Various system info needs to be represented in C
Process IDs, user IDs, file offsets, etc.

Using native C data types (e.g., int, long) in application
code would be nonportable; e.g.:

sizeof(long) might be 4 on one system, but 8 on another

One system might use int for PIDs, while another uses long

Even on same system, things may change across versions
E.g., in kernel 2.4, Linux switched from 16 to 32-bit UIDs

⇒ POSIX defines system data types:
Implementations must suitably define each system data type

Defined via typedef; e.g., typedef int pid_t

Most types have names suffixed “_t”

Applications should use these types; e.g., pid_t mypid;

⇒ will compile to correct types on any conformant system

[TLPI §3.6.2]

System Programming Fundamentals ©2020, Michael Kerrisk Fundamental Concepts 2-18 §2.3

Examples of system data types

Data
type

POSIX type
requirement

Description

uid_t Integer User ID
gid_t Integer Group ID
pid_t Signed integer Process ID

id_t Integer
Generic ID type; can hold pid_t,
uid_t, gid_t

off_t Signed integer File offset or size
sigset_t Integer or structure Signal set
size_t Unsigned integer Size of object (in bytes)
ssize_t Signed integer Size of object or error indication
time_t Integer/real-floating Time in seconds since Epoch
timer_t Arithmetic type POSIX timer ID

(Arithmetic type ∈ integer or floating type)

System Programming Fundamentals ©2020, Michael Kerrisk Fundamental Concepts 2-19 §2.3

Printing system data types

Need to take care when passing system data types to printf()

Example: pid_t can be short, int, or long

Suppose we write:

printf ("My PID is: %d\n", getpid ());

Works fine if:

pid_t is int

pid_t is short (C promotes short argument to int)

But what if pid_t is long (and long is bigger than int)?

⇒ argument exceeds range understood by format specifier
(top bytes will be lost)

System Programming Fundamentals ©2020, Michael Kerrisk Fundamental Concepts 2-20 §2.3

Printing system data types

On virtually all implementations, integer system data types
are long or smaller

⇒ Promote to long when printing system data types

printf ("My PID is: %ld\n", (long) getpid ());

Exception is off_t... typically long long

Promote to long long for printf()

printf (" Offset is %lld\n",
(long long) lseek(fd , 0, SEEK_CUR));

Can also use %zu and %zd for size_t and ssize_t

C99 has intmax_t (uintmax_t) with %jd (%ju) printf()
specifier

Solution for all integer types, but not on pre-C99 systems

Must include <stdint.h> to get these type definitions

System Programming Fundamentals ©2020, Michael Kerrisk Fundamental Concepts 2-21 §2.3

Outline

2 Fundamental Concepts 2-1
2.1 System calls and library functions 2-3
2.2 Error handling 2-10
2.3 System data types 2-17
2.4 Notes on code examples 2-22

Code examples presented in course

Code tarball == code from TLPI + further code for course

Examples on slides edited/excerpted for brevity

E.g., error-handling code may be omitted

Slides always show pathname for full source code

Full source code always includes error-handling code

Code license:

GNU GPL v3 for programs

GNU Lesser GPL v3 for library functions

http://www.gnu.org/licenses/#GPL
Understanding Open Source and Free Software Licensing; A. M. St
Laurent, 2004

Open Source Licensing: Software Freedom and Intellectual Property
Law; L. Rosen, 2004

Open Source Software: Rechtliche Rahmenbedingungen der Freien
Software; Till Jaeger, 2020

System Programming Fundamentals ©2020, Michael Kerrisk Fundamental Concepts 2-23 §2.4

Example code lib/ subdirectory

lib/ subdirectory contains code of a few functions
commonly used in examples

camelCase function name?

⇒ It’s mine

System Programming Fundamentals ©2020, Michael Kerrisk Fundamental Concepts 2-24 §2.4

Common header file

Many code examples make use of header file tlpi_hdr.h

Goal: make code examples a little shorter

tlpi_hdr.h:

Includes a few frequently used header files

Defines FALSE and TRUE

Includes declarations of some error-handling functions

[TLPI §3.5.2]

System Programming Fundamentals ©2020, Michael Kerrisk Fundamental Concepts 2-25 §2.4

Error-handling functions used in examples

Could handle errors as follows:

fd = open(pathname , flags , mode);
if (fd == -1) {

perror ("open");
exit(EXIT_FAILURE);

}

To save some effort, I define some simple error-handling
functions

System Programming Fundamentals ©2020, Michael Kerrisk Fundamental Concepts 2-26 §2.4

Error-handling functions used in examples

include " tlpi_hdr .h"
errExit (const char *format , ...);

Prints error message on stderr that includes:
Symbolic name for errno value (via some trickery)

strerror() description for current errno value

Text from the printf()-style message supplied in arguments

A terminating newline

Terminates program with exit status EXIT_FAILURE (1)

Example:

if (close(fd) == -1)
errExit ("close (fd=%d)", fd);

might produce:

ERROR [EBADF Bad file descriptor] close (fd =5)

System Programming Fundamentals ©2020, Michael Kerrisk Fundamental Concepts 2-27 §2.4

Error-handling functions used in examples

include " tlpi_hdr .h"
errMsg (const char *format , ...);

Like errExit(), but does not terminate program

include " tlpi_hdr .h"
fatal(const char *format , ...);

Displays a printf()-style message + newline

Terminates program with exit status EXIT_FAILURE (1)

System Programming Fundamentals ©2020, Michael Kerrisk Fundamental Concepts 2-28 §2.4

Building the sample code

You can manually compile the example programs, but there
is also a Makefile in each directory

⇒ Typing make in source code root directory builds all
programs in all subdirectories

If you encounter build errors relating to ACLs, capabilities, or
SELinux, see http://man7.org/tlpi/code/faq.html

Preferred solution is to install the necessary packages:

Debian derivatives: libcap-dev, libacl1-dev, libselinux1-dev

RPM-based systems: libcap-devel, libacl-devel,
libselinux-devel

If you can’t install these packages, then:

cd lib
sh Build_lib .sh # Ignore any errors you see

and then do make in individual directories as needed

System Programming Fundamentals ©2020, Michael Kerrisk Fundamental Concepts 2-29 §2.4

Using library functions from the sample code

To use my library functions in your code:

Include tlpi_hdr.h in your C source file

Located in lib/ subdirectory in source code

Link against my library, libtlpi.a, located in source
code root directory

To build library, run make in the source code root directory
or in lib/ subdirectory

Method 1: Compile with the following command:

cc -Isrc -root/lib yourprog .c src -root/ libtlpi .a

src-root must be replaced with the absolute or relative path
of source code root directory

Method 2: Add your program at right location in a
Makefile, and build using make

System Programming Fundamentals ©2020, Michael Kerrisk Fundamental Concepts 2-30 §2.4

Use of getopt() in example programs

Some example programs use getopt(3) to process
command-line options

getopt(3) man page has details, with example of use

See also TLPI Appendix B

System Programming Fundamentals ©2020, Michael Kerrisk Fundamental Concepts 2-31 §2.4

Notes

Linux/UNIX System Programming Fundamentals

File I/O and Files

Michael Kerrisk, man7.org © 2020

mtk@man7.org

NDC TechTown
August 2020

Outline

3 File I/O and Files 3-1
3.1 File I/O overview 3-3
3.2 open(), read(), write(), and close() 3-7
3.3 The file offset and lseek() 3-21
3.4 Relationship between file descriptors and open files 3-26
3.5 Duplicating file descriptors 3-35
3.6 File status flags (and fcntl()) 3-41
3.7 Retrieving file information: stat() 3-49

Outline

3 File I/O and Files 3-1
3.1 File I/O overview 3-3
3.2 open(), read(), write(), and close() 3-7
3.3 The file offset and lseek() 3-21
3.4 Relationship between file descriptors and open files 3-26
3.5 Duplicating file descriptors 3-35
3.6 File status flags (and fcntl()) 3-41
3.7 Retrieving file information: stat() 3-49

System calls versus stdio

C programs usually use stdio package for file I/O

Library functions layered on top of I/O system calls

System calls Library functions
file descriptor (int) file stream (FILE *)
open(), close() fopen(), fclose()
lseek() fseek(), ftell()
read() fgets(), fscanf(), fread() . . .
write() fputs(), fprintf(), fwrite(), . . .
– feof(), ferror()

We presume understanding of stdio ; ⇒ focus on system calls

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-4 §3.1

File descriptors

All I/O is done using file descriptors (FDs)

nonnegative integer that identifies an open file

Used for all types of files

terminals, regular files, pipes, FIFOs, devices, sockets, ...

3 FDs are normally available to programs run from shell:

(POSIX names are defined in <unistd.h>)

FD Purpose POSIX name stdio stream
0 Standard input STDIN_FILENO stdin
1 Standard output STDOUT_FILENO stdout
2 Standard error STDERR_FILENO stderr

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-5 §3.1

Key file I/O system calls

Four fundamental calls:

open() : open a file, optionally creating it if needed

Returns file descriptor used by remaining calls

read() : input

write() : output

close() : close file descriptor

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-6 §3.1

Outline

3 File I/O and Files 3-1
3.1 File I/O overview 3-3
3.2 open(), read(), write(), and close() 3-7
3.3 The file offset and lseek() 3-21
3.4 Relationship between file descriptors and open files 3-26
3.5 Duplicating file descriptors 3-35
3.6 File status flags (and fcntl()) 3-41
3.7 Retrieving file information: stat() 3-49

open() : opening a file

include <sys/stat.h>
include <fcntl.h>
int open(const char *pathname , int flags ,

... /* mode_t mode */);

Opens existing file / creates and opens new file

Arguments:

pathname identifies file to open

flags controls semantics of call

e.g., open an existing file vs create a new file

mode specifies permissions when creating new file

Returns: a file descriptor (nonnegative integer)

(Guaranteed to be lowest available FD)

[TLPI §4.3]

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-8 §3.2

open() flags argument

Created by ORing (|) together:

Access mode

Specify exactly one of O_RDONLY, O_WRONLY, or O_RDWR

File creation flags (bit flags)

File status flags (bit flags)

[TLPI §4.3.1]

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-9 §3.2

File creation flags

File creation flags:

Affect behavior of open() call

Can’t be retrieved or changed

Examples:
O_CREAT: create file if it doesn’t exist

mode argument must be specified

Without O_CREAT, can open only an existing file (else:
ENOENT)

O_EXCL: create “exclusively”

Give an error (EEXIST) if file already exists

Only meaningful with O_CREAT

O_TRUNC: truncate existing file to zero length

We’ll see other flags later

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-10 §3.2

File status flags

File status flags:

Affect semantics of subsequent file I/O

Can be retrieved and modified using fcntl()

Examples:

O_APPEND: always append writes to end of file

O_SYNC: make file writes synchronous

O_NONBLOCK: nonblocking I/O

More on these later!

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-11 §3.2

open() examples

Open existing file for reading:

fd = open(" script .txt", O_RDONLY);

Open new file for read-write, ensuring we are creator:

fd = open(" myfile .txt",
O_RDWR | O_CREAT | O_EXCL ,
S_IRUSR | S_IWUSR); /* rw ------- */

Open for writing, create if necessary, truncate, always
append writes:

fd = open("app.log",
O_WRONLY | O_CREAT | O_TRUNC | O_APPEND ,
S_IRUSR | S_IWUSR);

(O_TRUNC plus O_APPEND could be useful if another process
is also doing writes at the end of the file)

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-12 §3.2

read() : reading from a file

include <unistd .h>
ssize_t read(int fd , void *buffer , size_t count);

Arguments:

fd : file descriptor

buffer : pointer to buffer to store data
B No terminating null byte is placed at end of buffer

count : number of bytes to read

(buffer must be at least this big)

(size_t and ssize_t are integer types)

Returns:
> 0: number of bytes read

May be < count (e.g., terminal read() gets only one line)

0: end of file

–1: error

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-13 §3.2

write() : writing to a file

include <unistd .h>
ssize_t write(int fd , const void *buffer , size_t count);

Arguments:

fd : file descriptor

buffer : pointer to data to be written

count : number of bytes to write

Returns:
Number of bytes written

May be less than count (e.g., device full, or insufficient
space to write entire buffer to nonblocking socket)

–1 on error

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-14 §3.2

close() : closing a file

include <unistd .h>
int close(fd);

fd : file descriptor

Returns:

0: success

–1: error

Really should check for error!
Accidentally closing same FD twice

I.e., detect program logic error

Filesystem-specific errors

E.g., NFS commit failures may be reported only at close()

Note: close() always releases FD, even on failure return

See close(2) man page

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-15 §3.2

Example: copy.c

$./ copy old -file new -file

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-16 §3.2

Example: fileio/copy.c (snippet)

Always remember to handle errors!

#define BUF_SIZE 1024
char buf[BUF_SIZE];

infd = open(argv[1], O_RDONLY);
if (infd == -1) errExit("open %s", argv[1]);

flags = O_CREAT | O_WRONLY | O_TRUNC;
mode = S_IRUSR | S_IWUSR | S_IRGRP; /* rw-r----- */
outfd = open(argv[2], flags, mode);
if (outfd == -1) errExit("open %s", argv[2]);

while ((nread = read(infd, buf, BUF_SIZE)) > 0)
if (write(outfd, buf, nread) != nread)

fatal("write() returned error or partial write occurred");
if (nread == -1) errExit("read");

if (close(infd) == -1) errExit("close");
if (close(outfd) == -1) errExit("close");

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-17 §3.2

Universality of I/O

The fundamental I/O system calls work on almost all file
types:

$ ls > mylist
$./ copy mylist new # Regular file

$./ copy mylist /dev/tty # Device

$ mkfifo f; cat f & # FIFO
$./ copy mylist f

Note: the term file can be ambiguous:

A generic term, covering disk files, directories, sockets,
FIFOs, devices, and so on

Or specifically, a disk file in a filesystem

To clearly distinguish the latter, the term regular file is
sometimes used

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-18 §3.2

Exercise notes

For many exercises, there are templates for the solutions

Filenames: ex.*.c

Look for FIXMEs to see what pieces of code you must add

B You will need to edit the corresponding Makefile to
add a new target for the executable

Look for the EXERCISE_SOLNS_EXE macro

-EXERCISE_FILES_EXE = # ex. prog_a ex. prob_b
+ EXERCISE_FILES_EXE = ex. prog_a # ex. prog_b

Get a make tutorial now if you need one

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-19 §3.2

Exercise

1 Using open(), close(), read(), and write(), implement the command

tee [-a] file ([template: fileio/ex.tee.c]). This command

writes a copy of its standard input to standard output and to file. If

file does not exist, it should be created. If file already exists, it

should be truncated to zero length (O_TRUNC). The program should

support the -a option, which appends (O_APPEND) output to the file if

it already exists, rather than truncating the file. Some hints:
Build ../libtlpi.a by doing make in source code root directory!

After first doing some simple command-line testing, test using the unit test
in the Makefile: make tee_test.

Remember that you will need to add a target in the Makefile!

Standard input & output are automatically opened for a process.

Why does “man open” show the wrong manual page? It finds a page in the
wrong section first. Try “man 2 open” instead.

while inotifywait -q . ; do echo; echo; make; done

You may need to install the inotify-tools package

Command-line options can be parsed using getopt(3).

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-20 §3.2

Outline

3 File I/O and Files 3-1
3.1 File I/O overview 3-3
3.2 open(), read(), write(), and close() 3-7
3.3 The file offset and lseek() 3-21
3.4 Relationship between file descriptors and open files 3-26
3.5 Duplicating file descriptors 3-35
3.6 File status flags (and fcntl()) 3-41
3.7 Retrieving file information: stat() 3-49

The file offset

Every open file has a file offset:

Location at which next read or write will occur

Set to byte zero on open()

Automatically updated by read(), write(), etc.

Synonyms: read-write offset, file pointer

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-22 §3.3

lseek() : randomly accessing a file

include <unistd .h>
off_t lseek(int fd , off_t offset , int whence);

Adjusts offset for open file referred to by fd

Some file types not seekable (pipes, sockets, etc.)

offset and whence determine new position

(off_t is an integer type)

Returns new file offset (counted from start of file)

[TLPI §4.7]

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-23 §3.3

lseek() : randomly accessing a file

offset : new offset (byte position)

whence : how to interpret offset :

SEEK_SET: relative start of file

SEEK_CUR: relative to current position

SEEK_END: relative to next byte after EOF

offset can be negative for SEEK_CUR and SEEK_END

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-24 §3.3

lseek() examples

lseek(fd , 0, SEEK_SET);
/* Start of file */

lseek(fd , 1000 , SEEK_SET);
/* Byte 1000 */

lseek(fd , 0, SEEK_END);
/* First byte past EOF */

lseek(fd , -1, SEEK_END);
/* Last byte of file */

curr = lseek(fd , 0, SEEK_CUR);
/* Useful ! */

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-25 §3.3

Outline

3 File I/O and Files 3-1
3.1 File I/O overview 3-3
3.2 open(), read(), write(), and close() 3-7
3.3 The file offset and lseek() 3-21
3.4 Relationship between file descriptors and open files 3-26
3.5 Duplicating file descriptors 3-35
3.6 File status flags (and fcntl()) 3-41
3.7 Retrieving file information: stat() 3-49

Relationship between file descriptors and open files

Multiple file descriptors can refer to same open file

3 kernel data structures describe relationship:

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-27 §3.4

File descriptor table

Per-process table with one entry for each FD opened by process:

Flags controlling operation of FD (close-on-exec flag)

Reference to open file description

struct fdtable in include/linux/fdtable.h

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-28 §3.4

able of open file descriptions (open file table)

System-wide table, one entry for each open file on system:

File offset

File access mode (R / W / R-W, from open())

File status flags (from open())

Reference to inode object for file

struct file in include/linux/fs.h

Following terms are commonly treated as synonyms:

open file description (OFD) (POSIX)

open file table entry or open file handle
B Ambiguous terms; POSIX terminology is preferable

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-29 §3.4

(In-memory) inode table

System-wide table drawn from file inode information in filesystem:

File type (regular file, FIFO, socket, . . .)

File permissions

Other file properties (size, timestamps, . . .)

struct inode in include/linux/fs.h

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-30 §3.4

Duplicated file descriptors (intraprocess)

A process may have multiple FDs referring to same OFD

Achieved using dup() or dup2()

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-31 §3.4

Duplicated file descriptors (between processes)

Two processes may have FDs referring to same OFD

Can occur as a result of fork()

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-32 §3.4

Distinct open file table entries referring to same file

Two processes may have FDs referring to distinct OFDs that refer
to same inode

Two processes independently open()ed same file

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-33 §3.4

Why does this matter?

Two different FDs referring to same OFD share file offset

(File offset == location for next read()/write())

Changes (read(), write(), lseek()) via one FD visible via
other FD

Applies to both intraprocess & interprocess sharing of OFD

Similar scope rules for status flags (O_APPEND, O_SYNC, . . .)
Changes via one FD are visible via other FD

(fcntl(F_SETFL) and fcntl(F_GETFL))

Conversely, changes to FD flags (held in FD table) are
private to each process and FD

kcmp(2) KCMP_FILE operation can be used to test if two
FDs refer to same OFD

Linux-specific

[TLPI §5.4]

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-34 §3.4

Outline

3 File I/O and Files 3-1
3.1 File I/O overview 3-3
3.2 open(), read(), write(), and close() 3-7
3.3 The file offset and lseek() 3-21
3.4 Relationship between file descriptors and open files 3-26
3.5 Duplicating file descriptors 3-35
3.6 File status flags (and fcntl()) 3-41
3.7 Retrieving file information: stat() 3-49

A problem

./ myprog > output.log 2>&1

What does the shell syntax, 2>&1, do?

How does the shell do it?

Open file twice, once on FD 1, and once on FD 2?

FDs would have separate OFDs with distinct file offsets ⇒

standard output and error would overwrite

File may not even be open()-able:

e.g., ./myprog 2>&1 | less

Need a way to create duplicate FD that refers to same OFD

[TLPI §5.5]

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-36 §3.5

Duplicating file descriptors

include <unistd .h>
int dup(int oldfd);

Arguments:

oldfd : an existing file descriptor

Returns new file descriptor (on success)

New file descriptor is guaranteed to be lowest
available

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-37 §3.5

Duplicating file descriptors

FDs 0, 1, and 2 are normally always open, so shell can
achieve 2>&1 redirection by:

close(STDERR_FILENO); /* Frees FD 2 */
newfd = dup(STDOUT_FILENO); /* Reuses FD 2 */

But what if FD 0 had been closed beforehand?

We need a better API...

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-38 §3.5

Duplicating file descriptors

include <unistd .h>
int dup2(int oldfd , int newfd);

Like dup(), but uses newfd for the duplicate FD

Silently closes newfd if it was open

Closing + reusing newfd is done atomically

Important: otherwise newfd might be re-used in between

Does nothing if newfd == oldfd

Returns new file descriptor (i.e., newfd) on success

dup2(STDOUT_FILENO, STDERR_FILENO);

See dup2(2) man page for more details

[TLPI §5.5]

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-39 §3.5

Understanding dup2(oldfd, newfd)

FD table

oldfd

newfd

OFD table

OFD-a

OFD-b

inode table

inode-a

inode-b

FD table

oldfd

newfd

OFD table

OFD-a

inode table

inode-a

After the dup2() :

If newfd was an open FD, OFD-b will be released if newfd was the last
FD that referred to it

oldfd and newfd share file offset and file status flags

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-40 §3.5

Outline

3 File I/O and Files 3-1
3.1 File I/O overview 3-3
3.2 open(), read(), write(), and close() 3-7
3.3 The file offset and lseek() 3-21
3.4 Relationship between file descriptors and open files 3-26
3.5 Duplicating file descriptors 3-35
3.6 File status flags (and fcntl()) 3-41
3.7 Retrieving file information: stat() 3-49

File status flags

Control semantics of I/O on a file

(O_APPEND, O_NONBLOCK, O_SYNC, . . .)

Associated with open file description

Set when file is opened

Can be retrieved and modified using fcntl()

[TLPI §5.3]

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-42 §3.6

fcntl() : file control operations

include <fcntl.h>
int fcntl(int fd , int cmd /* , arg */);

Performs control operations on an open file

Arguments:

fd : file descriptor

cmd : the desired operation

arg : optional, type depends on cmd

Return on success depends on cmd ; –1 returned on error

Many types of operation

file locking, signal-driven I/O, file descriptor flags . . .

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-43 §3.6

Retrieving file status flags and access mode

Retrieving flags (both access mode and status flags)

flags = fcntl(fd , F_GETFL);

Check access mode

amode = flags & O_ACCMODE ;
if (amode == O_RDONLY || amode == O_RDWR)

printf ("File is readable \n");

B ’read’ and ’write’ are not separate bits!

if (flags & O_RDONLY) /* Wrong !! */
printf ("File is readable \n");

Access mode is a 2-bit field that is an enumeration:
00 == O_RDONLY

01 == O_WRONLY

10 == O_RDWR

Access mode can’t be changed after file is opened
System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-44 §3.6

Retrieving and modifying file status flags

Retrieving file status flags

flags = fcntl(fd , F_GETFL);
if (flags & O_NONBLOCK)

printf (" Nonblocking I/O is in effect \n");

Setting a file status flag

flags = fcntl(fd , F_GETFL); /* Retrieve flags */
flags |= O_APPEND ; /* Set " append " bit */
fcntl(fd , F_SETFL , flags); /* Modify flags */

B Not thread-safe...

(But in many cases, flags can be set when FD is created, e.g.,
by open())

Clearing a file status flag

flags = fcntl(fd , F_GETFL); /* Retrieve flags */
flags &= ~ O_APPEND ; /* Clear " append " bit */
fcntl(fd , F_SETFL , flags); /* Modify flags */

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-45 §3.6

Exercise

1 Show that duplicate file descriptors share file offset and file status flags

by writing a program ([template: fileio/ex.fd_sharing.c]) that:

Opens an existing file (supplied as argv[1]) and duplicates (dup())
the resulting file descriptor, to create a second file descriptor.

Displays the file offset and the state of the O_APPEND file status
flag via the first file descriptor.

Initially the file offset will be zero, and the O_APPEND flag
will not be set

Changes the file offset (lseek(), slide 3-23) and enables (turns on)
the O_APPEND file status flag (fcntl(), slide 3-45) via the second
file descriptor.

Displays the file offset and the state of the O_APPEND file status
flag via the first file descriptor.

Hints:

Remember to update the Makefile!

while inotifywait -q . ; do echo; echo; make; done

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-46 §3.6

Exercise

2 The program fileio/fd_overwrite.c can be used to demonstrate
that if a program opens the same file twice, the two file descriptors do
not share a file offset, and thus writes via one file descriptor will
overwrite writes via the other file descriptor. By contrast, if a program
opens the file and duplicates the resulting file descriptor, then the two
file descriptors do share a file offset, and writes via one file descriptor
will not overwrite writes via the other file descriptor. The program is
used with a command-line as follows:

$./ fd_overwrite [-d] <file > <string >...

By default, the program open()s the specified file twice, but if the –d
option is specified, then it open()s the file once and duplicates the
resulting file descriptor. The remaining arguments are strings that are
alternately written to the two file descriptors (thus, the first string is
written to FD 1, the second to FD 2, the third to FD1, and so on).
Run the program with the following two command lines, and explain
the output that appears in the two files:

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-47 §3.6

Exercise

$./ fd_overwrite_test x a A b B c C
$./ fd_overwrite_test -d y a A b B c C

3 Read about the KCMP_FILE operation in the kcmp(2) man page.
Extend the program created in the first exercise to use this operation
to verify that the two file descriptors refer to the same open file
description (i.e., use kcmp(getpid(), getpid(), KCMP_FILE, fd1, fd2)).
Note: because there is currently no kcmp() wrapper function in glibc,
you will have to write one yourself using syscall(2) :

define _GNU_SOURCE
include <unistd .h>
include <sys/ syscall .h>
include <linux /kcmp.h>

static int kcmp(pid_t pid1 , pid_t pid2 , int type ,
unsigned long idx1 , unsigned long idx2)

{
return syscall (SYS_kcmp , pid1 , pid2 , type ,

idx1 , idx2);
}

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-48 §3.6

Outline

3 File I/O and Files 3-1
3.1 File I/O overview 3-3
3.2 open(), read(), write(), and close() 3-7
3.3 The file offset and lseek() 3-21
3.4 Relationship between file descriptors and open files 3-26
3.5 Duplicating file descriptors 3-35
3.6 File status flags (and fcntl()) 3-41
3.7 Retrieving file information: stat() 3-49

Retrieving file information: stat()

include <sys/stat.h>
int stat(const char *pathname , struct stat * statbuf);
int lstat(const char *pathname , struct stat * statbuf);
int fstat(int fd , struct stat * statbuf);

Retrieve information about a file (“metadata”), mostly from
inode

Information placed in statbuf

stat() : retrieve info about filename identified by pathname

lstat() : if pathname is a symbolic link, retrieve information
about link, not file to which it refers

(stat() dereferences symbolic links)

fstat() : retrieve info about file referred to by descriptor fd

[TLPI §15.1]

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-50 §3.7

The stat structure

struct stat {
dev_t st_dev ; /* ID of device containing file */
ino_t st_ino ; /* Inode number of file */
mode_t st_mode ; /* File type and permissions */
nlink_t st_nlink ; /* # of (hard) links to file */
uid_t st_uid ; /* User ID of file owner */
gid_t st_gid ; /* Group ID of file owner */
dev_t st_rdev ; /* ID for device special files */
off_t st_size ; /* File size (bytes) */
blksize_t st_blksize ; /* Optimal I/O block size (B) */
blkcnt_t st_blocks ; /* # of 512B blocks allocated */
time_t st_atime ; /* Time of last file access */
time_t st_mtime ; /* Time of last file modification */
time_t st_ctime ; /* Time of last status change */

};

All types above are defined by POSIX (mostly integers)

Full details on fields can be found in inode(7) and stat(2)

We’ll look at details of a subset of these fields

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-51 §3.7

The stat structure

st_dev : ID of device containing filesystem where device
resides

Consists of major ID (12 bits) + minor ID (20 bits)

st_dev value is calculated by kernel (not stored as part of
inode)

st_ino : inode number of file

st_nlink : number of (hard) links to file

st_size : nominal file size (bytes) (ls –l)

st_blocks : number of 512-byte blocks actually allocated for
file (du –h)

May be < (st_size / 512) because of file “holes”

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-52 §3.7

File timestamps

File timestamps record time since Epoch (00:00:00, 1 Jan
1970, UTC):

st_atime : time of last access of file data

st_mtime : time of last modification of file data

st_ctime : time of last change to inode

Various system calls update timestamps as expected

TLPI Table 15-2

Timestamps are really timespec structures, recording
seconds and nanoseconds

E.g., st_atim.tv_sec and st_atim.tv_nsec

Not all FS types support nanosecond timestamps

XFS, ext4, and Btrfs do

[TLPI §15.2]

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-53 §3.7

File ownership

st_uid and st_gid identify ownership of file

File UID + GID determine permissions for file access

UID of new file == effective UID of creating process

On most filesystems, GID of new file is either:

Effective GID of creating process (System V semantics)

GID of parent directory (BSD semantics)

Allows creation of subtrees that are always accessible to a
particular group

Choice is determined by whether parent directory’s
set-GID bit is enabled

chmod g+s <dir> (Propagates directory GID to new files)

This use of set-GID bit is a Linux extension

[TLPI §15.3]

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-54 §3.7

File type and mode

st_mode returns two pieces of info:

File mode

U G T R W X R W X R W X

User Group Other

File permissions

File type

Left-most bits give file type

Remaining bits are file mode

File permissions (9 bits) + set-UID/set-GID/sticky bits

[TLPI §15.1]

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-55 §3.7

File type

Extract using statbuf.st_mode & S_IFMT

Check using predefined constants and macros:

if ((statbuf . st_mode & S_IFMT) == S_IFREG)
printf (" regular file\n");

Common operation, so there are shorthand macros:

if (S_ISREG (statbuf . st_mode)) ...

Constant Test macro File type
S_IFREG S_ISREG() Regular file
S_IFDIR S_ISDIR() Directory
S_IFCHR S_ISCHR() Character device
S_IFBLK S_ISBLK() Block device
S_IFIFO S_ISFIFO() FIFO
S_IFSOCK S_ISSOCK() Socket
S_IFLNK S_ISLNK() Symbolic link

System Programming Fundamentals ©2020, Michael Kerrisk File I/O and Files 3-56 §3.7

Linux/UNIX System Programming Fundamentals

Directories and Links

Michael Kerrisk, man7.org © 2020

mtk@man7.org

NDC TechTown
August 2020

Outline

4 Directories and Links 4-1
4.1 Directories and (hard) links 4-3
4.2 Symbolic links 4-8
4.3 Hard links: system calls and library functions 4-14
4.4 Symbolic links: system calls and library functions 4-20
4.5 Current working directory 4-23
4.6 Operating relative to a directory (openat() etc.) 4-27
4.7 Scanning directories 4-38

Outline

4 Directories and Links 4-1
4.1 Directories and (hard) links 4-3
4.2 Symbolic links 4-8
4.3 Hard links: system calls and library functions 4-14
4.4 Symbolic links: system calls and library functions 4-20
4.5 Current working directory 4-23
4.6 Operating relative to a directory (openat() etc.) 4-27
4.7 Scanning directories 4-38

Directories

Stored in same way as a regular file on filesystem

But, marked as “directory” in inode

(mkdir(), rmdir())

File with a special organization: table mapping filenames to
inode numbers

Unsorted! (ls -U)

tmp 1952

bin 6523

Mail 224

init 1976

.bashrc 4594

To see inode number: ls -i <file>

Filenames can be up to 255 bytes on most native Linux
filesystems

[TLPI §18.1]

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-4 §4.1

(Hard) Links

Filename == alias for inode number

Usual terminology for these aliases is “links”
Or: “hard links” to distinguish from soft/symbolic links

Multiple filenames can alias to same inode number
In same directory or in different directories

Creating hard link in shell: ln <old-name> <new-name>

$ mkdir dir1 dir2
$ echo "Hello" > dir1/x
$ ln dir1/x dir2/y
$ echo "World" >> dir2/y
$ cat dir1/x
Hello
World
$ ls -li dir1/x dir2/y
4064456 -rw -r--r--. 2 mtk mtk 12 Nov 14 11:22 dir1/x
4064456 -rw -r--r--. 2 mtk mtk 12 Nov 14 11:22 dir2/y

[TLPI §18.1]

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-5 §4.1

(Hard) Links

All links to a file have equal status

Each inode has a link count

File blocks are deallocated only when link count reaches zero

⇒ rm <file> means:

Remove this link to an inode

Decrement link counter in inode

If link count in inode is now 0, deallocate data blocks and
recycle inode slot

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-6 §4.1

Restrictions on creating hard links

Can’t link to a file on another filesystem

Inode numbers are unique only within a filesystem

Can’t link to a directory
Prevents creation of loops in directory hierarchy

Tools that traverse trees could detect such loops, but would
need to track/test against inode numbers of visited
directory (expensive)

Garbage collection would be required for orphaned
directories

If a directory has multiple links, what should “..” mean?

If several parent directories have links to same child
directory, what is “..” in that directory?

What should happen to “..” if “original” parent is deleted?

Symbolic links provide a way round these limitations

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-7 §4.1

Outline

4 Directories and Links 4-1
4.1 Directories and (hard) links 4-3
4.2 Symbolic links 4-8
4.3 Hard links: system calls and library functions 4-14
4.4 Symbolic links: system calls and library functions 4-20
4.5 Current working directory 4-23
4.6 Operating relative to a directory (openat() etc.) 4-27
4.7 Scanning directories 4-38

Symbolic links

Symbolic link (AKA “symlink” or “soft link”):

File with specially marked inode

Content is name of another file (the “target”)

Create from shell: ln -s target link-name

[TLPI §18.2]

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-9 §4.2

Interpretation of symbolic links

System calls dereference (“resolve”, “follow”) symbolic
links when interpreting pathnames

I.e., symbolic link is replaced with “target”

Target of link can be a relative pathname

Interpreted relative to directory containing link

Target of symlink can be another symlink

Kernel will recursively resolve

Limit of 40 dereferences in a pathname

> 40 dereferences ⇒ ELOOP error

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-10 §4.2

Interpretation of symbolic links

All system calls always dereference symlinks in prefix part
(“dirname”) of a pathname

/prefix/part/of/path/basename

Most system calls also dereference symlinks in final
component (“basename”) of a pathname

Some system calls don’t dereference symlinks in “basename”
Certain system calls (by design) work on symlinks rather
than their targets; e.g.:

“l” syscalls (lchown(), lstat(), etc.)

unlink(), rename(), ...

Some system calls fail (by design) if given a symbolic link

e.g., rmdir(), open(O_NOFOLLOW)

Prevents “symlink attacks”

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-11 §4.2

Symbolic links

Hard and soft links are different kinds of aliases:

Hard links are aliases for inode numbers

Symbolic links are aliases for pathnames

Symbolic links are not reflected in link count of target file

If target is deleted (or never existed), symbolic link is
dangling

Attempts to resolve yield ENOENT error

Unlike hard links, symbolic links:

Can link across filesystems

Can link to directories

Programs that scan directory trees know to avoid symbolic
link loops

But there are still use cases for hard links...

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-12 §4.2

So then, why use hard links?

Symlinks add layer of indirection (extra accesses in FS)

Hard link pins file into existence; a symlink does not:

$ ln -s file slink
$ ln file hlink
$ rm file # Renaming file would also be a problem ...
$ cat slink
cat: slink : No such file or directory

But hlink still refers to original file...

Hard links are needed to implement “..”

Hard links remain valid inside chroot environment

And there are other use cases

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-13 §4.2

Outline

4 Directories and Links 4-1
4.1 Directories and (hard) links 4-3
4.2 Symbolic links 4-8
4.3 Hard links: system calls and library functions 4-14
4.4 Symbolic links: system calls and library functions 4-20
4.5 Current working directory 4-23
4.6 Operating relative to a directory (openat() etc.) 4-27
4.7 Scanning directories 4-38

Creating a (hard) link: link()

include <unistd .h>
int link(const char *oldpath , const char * newpath);

Creates new (hard) link, newpath, to an existing file, oldpath

newpath must not exist before call (EEXIST)

[TLPI §18.3]

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-15 §4.3

Removing a link: unlink()

include <unistd .h>
int unlink (const char * pathname);

Removes the link pathname

Can’t unlink() a directory (use rmdir() or remove())

Subtracts 1 from link count in file’s inode

If link count is now 0, file is deleted

If pathname is a symlink, the link itself is removed

(Not the target of the symlink)

[TLPI §18.3]

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-16 §4.3

unlink() and open files

The kernel counts open file descriptions (OFDs) referring to
a file

A file’s contents are deleted only when

link count is 0 and

all OFDs are closed

Uses:

Can unlink() a file without worrying if open in another
process

Can open a temporary file, and immediately unlink its name

Filename disappears immediately

File content disappears when file is closed

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-17 §4.3

Removing a file or directory: remove()

include <stdio.h>
int remove (const char * pathname);

Removes a file or a directory

Calls unlink() on files

Calls rmdir() on directories

[TLPI §18.7]

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-18 §4.3

Renaming a file: rename()

include <stdio.h>
int rename (const char *oldpath , const char * newpath);

Renames the file oldpath to newpath

rename() simply manipulates entries in directories:

⇒ oldpath and newpath must be on same filesystem

How does mv(1) move files between filesystems?

Write a copy of file, and delete original

More details (and rules) in TLPI §18.4 and rename(2)

[TLPI §18.4]

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-19 §4.3

Outline

4 Directories and Links 4-1
4.1 Directories and (hard) links 4-3
4.2 Symbolic links 4-8
4.3 Hard links: system calls and library functions 4-14
4.4 Symbolic links: system calls and library functions 4-20
4.5 Current working directory 4-23
4.6 Operating relative to a directory (openat() etc.) 4-27
4.7 Scanning directories 4-38

Creating a symbolic link: symlink()

include <unistd .h>
int symlink (const char *target , const char * linkpath);

Creates a new symbolic link, linkpath, with content target

(A symlink can be removed with unlink())

target can be up to PATH_MAX bytes (including terminating
NULL byte)

target need not exist at time of call ⇒ dangling link

[TLPI §18.5]

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-21 §4.4

Inspecting a symbolic link: readlink()

include <unistd .h>
ssize_t readlink (const char *pathname , char *buffer ,

size_t bufsiz);

Retrieves content (i.e., target) of symlink in (final
component of) pathname

Content is placed in buffer
B No null terminator added

bufsiz specifies number of bytes available in buffer

Returns number of bytes placed in buffer, or –1 on error

B If bufsiz is too small, value placed in buffer is silently
truncated

Make sure bufsiz is bigger than needed

Check that return value < bufsiz

[TLPI §18.5]

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-22 §4.4

Outline

4 Directories and Links 4-1
4.1 Directories and (hard) links 4-3
4.2 Symbolic links 4-8
4.3 Hard links: system calls and library functions 4-14
4.4 Symbolic links: system calls and library functions 4-20
4.5 Current working directory 4-23
4.6 Operating relative to a directory (openat() etc.) 4-27
4.7 Scanning directories 4-38

The current working directory

Each process has a current working directory (CWD)

Location from which relative pathnames are interpreted

(i.e., pathnames that do not start with “/”)

[TLPI §18.10]

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-24 §4.5

Retrieving the current working directory: getcwd()

include <unistd .h>
char * getcwd (char *cwdbuf , size_t size);

Places null-terminated absolute pathname of CWD in cwdbuf

size specifies number of bytes available in cwdbuf

Returns cwdbuf on success, or NULL on error

ERANGE error means size was not big enough

Glibc extension: if cwdbuf is NULL and size is 0, getcwd()
allocates buffer that is large enough and returns pointer to it

Caller must free() buffer

[TLPI §18.10]

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-25 §4.5

Changing the current working directory

include <unistd .h>
int chdir(const char * pathname);
int fchdir (int fd);

chdir() changes CWD to pathname

fchdir() changes CWD to directory referred to by file
descriptor fd

Obtain fd by open()-ing a directory for reading

int fd;
fd = open(".", O_RDONLY); /* Remember where we are */
chdir("/tmp"); /* Go somewhere else */
... /* Do something in that directory */
fchdir (fd); /* Return to previous location */
close(fd); /* No longer needed */

[TLPI §18.10]

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-26 §4.5

Outline

4 Directories and Links 4-1
4.1 Directories and (hard) links 4-3
4.2 Symbolic links 4-8
4.3 Hard links: system calls and library functions 4-14
4.4 Symbolic links: system calls and library functions 4-20
4.5 Current working directory 4-23
4.6 Operating relative to a directory (openat() etc.) 4-27
4.7 Scanning directories 4-38

openat()

include <fcntl.h>
int openat (int dirfd , const char *pathname , int oflag ,

...);

Similar to open(), but has extra argument dirfd

File descriptor that refers to a directory

Example of one of several APIs that support following cases:

pathname is absolute ⇒ dirfd is ignored; behavior exactly
like open()

pathname is relative, dirfd is AT_FDCWD ⇒ pathname is
interpreted in usual fashion (i.e., like open())

pathname is relative, dirfd refers to directory ⇒ pathname
is interpreted relative to dirfd (instead of CWD)

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-28 §4.6

The *at() functions

Many similar APIs added to Linux in 2.6.16; others added
later

execveat(2), faccessat(2), fanotify_mark(2), fchmodat(2),
fchownat(2), fstatat(2), futimesat(2), linkat(2), mkdirat(2),
mknodat(2), name_to_handle_at(2), openat2(2), readlinkat(2),
renameat(2), statx(2), symlinkat(2), unlinkat(2), utimensat(2),
mkfifoat(3), scandirat(3)

Some standardized in POSIX.1-2008

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-29 §4.6

Rationale for the *at() functions

Address problems in many traditional APIs

First: useful in multithreaded applications

“Current working directory” is a process-global attribute

*at() functions allow threads to maintain per-thread
working directory

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-30 §4.6

Rationale for the *at() functions

Example usage of “thread current directory”

/* Obtain file descriptor that refers to a directory */

dirfd = open("/path/to/dir", O_RDONLY);

/* Perform operations on relative pathnames */

fstatat (dirfd , " somefile ", & statbuf);
fd = openat (dirfd , " anotherfile ", O_CREAT |O_RDWR , mode);

/* Change thread " current directory " to a subdirectory
under ’dirfd ’ */

newdirfd = openat (dirfd , " subdir ", O_RDONLY);
if (newdirfd != -1) {

close(dirfd);
dirfd = newdirfd ;

}

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-31 §4.6

Rationale for the *at() functions

Second: avoid race conditions that can occur when
operating files in location other than CWD

Problem: a symlink in dirname of pathname changes as we
perform operations related to pathname; example:

1 Check (stat()) attributes of /dir1/dir2/file

2 Target of dir1 or dir2 symlink changes

3 Create (open()) /dir1/dir2/file.dep

Solution: open an FD referring to target directory and
employ *at() calls

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-32 §4.6

Rationale for the *at() functions

dirfd = open("/dir1/dir2", O_RDONLY);

fstatat (dirfd , "file", & statbuf);
/* Perform a check using returned stat buffer */

fd = openat (dirfd , "file.dep", O_CREAT ...);

open() is being used only to obtain a reference to directory

We can’t read() from dirfd

See also: discussion of O_PATH flag in open(2)

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-33 §4.6

Rationale for the *at() functions

dirfd = open("/dir1/dir2", O_RDONLY);

fstatat (dirfd , "file", & statbuf);
/* Perform a check using returned stat buffer */

fd = openat (dirfd , "file.dep", O_CREAT ...);

dirfd remains a stable reference to directory, regardless of
subsequent changes to symlinks in /dir1/dir2

dirfd has other useful properties:
dirfd is stable even if original directory is renamed

(If directory is deleted, attempts to create files give ENOENT)

Open dirfd prevents filesystem being unmounted

Like traditional CWD

(Solutions based on initially resolving symlinks in pathname
by use of realpath(3) would not have these properties)

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-34 §4.6

Exercises

1 The goal of this exercise is to show one of the reasons that the *at() functions (in
this case, openat()) can be useful: to obtain a reference to a directory that remains
stable even if symlink components in the directory pathname are modified.

Write a program ([template: dirs_links/ex.openat_expmt.c]) that takes one
argument, which is a pathname. The final component of the prefix (dirname) of
this pathname is expected to be a symbolic link that refers to a directory. The
suffix component (basename) of the pathname is a filename inside that directory.
(To split a pathname into dirname and basename components, use dirname(3) and
basename(3).)

The program should perform the following steps:

Open a (read-only) file descriptor referring to the dirname component of the
argument.

Fetch (readlink(), slide 4-22) the target of the symbolic link referred to by
the dirname component and print it. (Remember: readlink() does not
null-terminate the returned buffer.)

Sleep for 15 seconds

Once more fetch and display the target of the symbolic link

Use open() to open the file, using the full pathname specified on the
command line. Read and display the contents of the file.
[Exercise continues on the next slide]

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-35 §4.6

Exercises

Use openat() (slide 4-28) to open the file named in the command-line
argument, using the directory file descriptor obtained in the first step plus
the basename component of the argument. Read (read()) and display the
contents of the file. (Remember: read() does not null-terminate the returned
buffer.)

Set up a test environment for the program as follows:

$ mkdir xxx
$ echo " hello " > xxx/f
$ mkdir yyy
$ echo " world " > yyy/f
$ ln -s xxx testdir

Run the program, specifying testdir/f as the argument and, while the
program is sleeping, execute the following command:

$ rm testdir ; ln -s yyy testdir

Explain the program output, which should be:

world
hello

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-36 §4.6

Exercises

2 (Kernel hacking exercise) Although “at” versions of many historical UNIX APIs
have been implemented on Linux, there are still a few APIs that do not yet have
“at” equivalents. Notably, the bindat() and connectat() APIs are not implemented
on Linux (or specified in POSIX). These APIs work with UNIX domain sockets,
which employ pathnames to identify sockets.

These APIs are implemented on FreeBSD. Read the FreeBSD man pages for these
APIS, and implement the equivalent system calls on Linux. Obviously, it will be
helpful to also look at the Linux kernel source code that implements the existing
“at” system calls, and read their manual pages. (From time to time, the topic of
implementing these system calls has been raised on the Linux Kernel Mailing List,
and it would be worth hunting down those threads to CC interested people on any
patches.)

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-37 §4.6

Outline

4 Directories and Links 4-1
4.1 Directories and (hard) links 4-3
4.2 Symbolic links 4-8
4.3 Hard links: system calls and library functions 4-14
4.4 Symbolic links: system calls and library functions 4-20
4.5 Current working directory 4-23
4.6 Operating relative to a directory (openat() etc.) 4-27
4.7 Scanning directories 4-38

Scanning directories

Task: scan the contents of a directory list, or traverse all files in a
directory subtree

A single directory can be opened and scanned using
opendir(3) and readdir(3)

Yields a list of filenames and inode numbers

See TLPI §18.8 for details

An entire directory tree can be traversed using nftw(3)

nftw() is implemented using opendir() and readdir()

See TLPI §18.8 for details

System Programming Fundamentals ©2020, Michael Kerrisk Directories and Links 4-39 §4.7

Notes

Linux/UNIX System Programming Fundamentals

Processes

Michael Kerrisk, man7.org © 2020

mtk@man7.org

NDC TechTown
August 2020

Outline

5 Processes 5-1
5.1 Process IDs 5-3
5.2 Process memory layout 5-6
5.3 Command-line arguments 5-9
5.4 The environment list 5-11
5.5 The /proc filesystem 5-16

Outline

5 Processes 5-1
5.1 Process IDs 5-3
5.2 Process memory layout 5-6
5.3 Command-line arguments 5-9
5.4 The environment list 5-11
5.5 The /proc filesystem 5-16

Process ID

include <unistd .h>
pid_t getpid (void);

Process == running instance of a program

Program + program loader (kernel) ⇒ process

Every process has a process ID (PID)

pid_t : positive integer that uniquely identifies process

getpid() returns callers’s PID

Maximum PID is 32767 on Linux

Kernel then cycles, reusing PIDs, starting at low numbers

All PID slots used? ⇒ fork() fails with EAGAIN

Limit adjustable via /proc/sys/kernel/pid_max (up to
kernel’s PID_MAX_LIMIT constant, typically 4*1024*1024)

[TLPI §6.2]

System Programming Fundamentals ©2020, Michael Kerrisk Processes 5-4 §5.1

Parent process ID

include <unistd .h>
pid_t getppid (void);

Every process has a parent

Typically, process that created this process using fork()

Parent process is informed when its child terminates

All processes on system thus form a tree

At root is init, PID 1, the ancestor of all processes

“Orphaned” processes are “adopted” by init

getppid() returns PID of caller’s parent process (PPID)

[TLPI §6.2]

System Programming Fundamentals ©2020, Michael Kerrisk Processes 5-5 §5.1

Outline

5 Processes 5-1
5.1 Process IDs 5-3
5.2 Process memory layout 5-6
5.3 Command-line arguments 5-9
5.4 The environment list 5-11
5.5 The /proc filesystem 5-16

Process memory layout

Virtual memory of a process is divided into segments:
Text: machine-language instructions

Marked read-only to prevent self-modification

Multiple processes can share same code in memory

Initialized data: global and static variables that are
explicitly initialized

Values read from program file when process is created

Uninitialized data: global and static variables that are not
explicitly initialized

Initialized to zero when process is created

Stack: storage for function local variables and call linkage
info (saved SP and PC registers)

Heap: an area from which memory can be dynamically
allocated and deallocated

malloc() and free()

System Programming Fundamentals ©2020, Michael Kerrisk Processes 5-7 §5.2

Process memory layout (simplified)

argv, environ

Stack

(grows downward)

(unallocated memory)

Heap

(grows upward)

Uninitialized data (bss)

Initialized data

Te xt (program code)

Memory

mappings

placed here

Low virtual

address

High virtual

address

[TLPI §6.3]

System Programming Fundamentals ©2020, Michael Kerrisk Processes 5-8 §5.2

Outline

5 Processes 5-1
5.1 Process IDs 5-3
5.2 Process memory layout 5-6
5.3 Command-line arguments 5-9
5.4 The environment list 5-11
5.5 The /proc filesystem 5-16

Command-line arguments

Command-line arguments of a program provided as first two
arguments of main()

Conventionally named argc and argv

int argc : number of arguments

char *argv[] : array of pointers to arguments (strings)
argv[0] == name used to invoke program

argv[argc] == NULL

E.g., for the command, necho hello world:

[TLPI §6.6]

System Programming Fundamentals ©2020, Michael Kerrisk Processes 5-10 §5.3

Outline

5 Processes 5-1
5.1 Process IDs 5-3
5.2 Process memory layout 5-6
5.3 Command-line arguments 5-9
5.4 The environment list 5-11
5.5 The /proc filesystem 5-16

Environment list (environ)

Each process has a list of environment variables

Strings of form name=value

New process inherits copy of parent’s environment

Simple (one-way) interprocess communication

Commonly used to control behavior of programs

Examples:

HOME: user’s home directory (initialized at login)

PATH: list of directories to search for executable programs

EDITOR: user’s preferred editor

[TLPI §6.7]

System Programming Fundamentals ©2020, Michael Kerrisk Processes 5-12 §5.4

Environment list (environ)

Can create environment variables within shell:

$ MANWIDTH =72
$ export MANWIDTH
$ man getpid

All processes created by shell will inherit definition

Creating an environment variable for a single command
(does not modify shell’s environment):

$ MANWIDTH =72 man getpid

To list all environment variables, use env(1) or printenv(1)

System Programming Fundamentals ©2020, Michael Kerrisk Processes 5-13 §5.4

Accessing the environment from a program

Environment list can be accessed via a global variable:

extern char ** environ ;

NULL-terminated array of pointers to strings:

Displaying environment:

for (char **ep = environ ; *ep != NULL; ep ++)
puts (*ep);

System Programming Fundamentals ©2020, Michael Kerrisk Processes 5-14 §5.4

Environment variable APIs

Fetching value of an EV: value = getenv("NAME");

Creating/modifying an EV:

putenv("NAME=value");

setenv("NAME", "value", overwrite);

Removing an EV: unsetenv("NAME");

/proc/PID/environment can be used (with suitable
permissions) to view environment of another process

See man pages and TLPI §6.7

System Programming Fundamentals ©2020, Michael Kerrisk Processes 5-15 §5.4

Outline

5 Processes 5-1
5.1 Process IDs 5-3
5.2 Process memory layout 5-6
5.3 Command-line arguments 5-9
5.4 The environment list 5-11
5.5 The /proc filesystem 5-16

The /proc filesystem

Pseudofilesystem that exposes kernel information via
filesystem metaphor

Structured as a set of subdirectories and files

proc(5) man page

Files don’t really exist

Created on-the-fly when pathnames under /proc are
accessed

Many files read-only

Some files are writable ⇒ can update kernel settings

System Programming Fundamentals ©2020, Michael Kerrisk Processes 5-17 §5.5

The /proc filesystem: examples

/proc/cmdline: command line used to start kernel

/proc/cpuinfo: info about CPUs on the system

/proc/meminfo: info about memory and memory usage

/proc/modules: info about loaded kernel modules

/proc/sys/fs/: files and subdirectories with
filesystem-related info

/proc/sys/kernel/: files and subdirectories with various
readable/settable kernel parameters

/proc/sys/net/: files and subdirectories with various
readable/settable networking parameters

System Programming Fundamentals ©2020, Michael Kerrisk Processes 5-18 §5.5

/proc/PID/ directories

One /proc/PID/ subdirectory for each running process

Subdirectories and files exposing info about process with
corresponding PID

Some files publicly readable, some readable only by process
owner; a few files writable

Examples

cmdline: command line used to start program

cwd: current working directory

environ: environment of process

fd: directory with info about open file descriptors

limits: resource limits

maps: mappings in virtual address space

status: (lots of) info about process

System Programming Fundamentals ©2020, Michael Kerrisk Processes 5-19 §5.5

Notes

Linux/UNIX System Programming Fundamentals

Signals: Introduction

Michael Kerrisk, man7.org © 2020

mtk@man7.org

NDC TechTown
August 2020

Outline

6 Signals: Introduction 6-1
6.1 Overview of signals 6-3
6.2 Signal dispositions 6-8
6.3 Signal handlers 6-16
6.4 Useful signal-related functions 6-21
6.5 Signal sets, the signal mask, and pending signals 6-25

Outline

6 Signals: Introduction 6-1
6.1 Overview of signals 6-3
6.2 Signal dispositions 6-8
6.3 Signal handlers 6-16
6.4 Useful signal-related functions 6-21
6.5 Signal sets, the signal mask, and pending signals 6-25

Signals are a notification mechanism

Signal == notification to a process that an event occurred

“Software interrupts”

asynchronous: receiver (generally) can’t predict when a
signal will occur

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-4 §6.1

Signal types

64 signals (on Linux)

Each signal has a unique integer value

Numbered starting at 1

Defined symbolically in <signal.h>:

Names of form SIGxxx

e.g., signal 2 is SIGINT (“terminal interrupt”)

Two broad categories of signals:
“Standard” signals (1 to 31)

Mostly for kernel-defined purposes

Realtime signals (32 to 64)

Exist for user-defined purposes

[TLPI §20.1]

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-5 §6.1

Signal generation

Signals can be sent by:

The kernel (the common case)

Another process (with suitable permissions)

kill(pid, sig) and related APIs

Kernel generates signals for various events, e.g.:

Attempt to access a nonexistent memory address (SIGSEGV)

Terminal interrupt character (Control-C) was typed
(SIGINT)

Child process terminated (SIGCHLD)

Process CPU time limit exceeded (SIGXCPU)

[TLPI §20.1]

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-6 §6.1

Terminology

Some terminology:

A signal is generated when an event occurs

Later, a signal is delivered to the process, which then takes
some action in response

Between generation and delivery, a signal is pending

We can block (delay) delivery of specific signals by adding
them to process’s signal mask

Signal mask == set of signals whose delivery is
blocked

Pending signal is delivered only after it is unblocked

[TLPI §20.1]

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-7 §6.1

Outline

6 Signals: Introduction 6-1
6.1 Overview of signals 6-3
6.2 Signal dispositions 6-8
6.3 Signal handlers 6-16
6.4 Useful signal-related functions 6-21
6.5 Signal sets, the signal mask, and pending signals 6-25

Signal default actions

When a signal is delivered, a process takes one of these
default actions:

Ignore: signal is discarded by kernel, has no effect on
process

Terminate: process is terminated (“killed”)

Core dump: process produces a core dump and is
terminated

Core dump file can be used to examine state of program
inside a debugger

See also core(5) man page

Stop: execution of process is suspended

Continue: execution of a stopped process is resumed

Default action for each signal is signal-specific

[TLPI §20.2]

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-9 §6.2

Standard signals and their default actions

Name Description Default
SIGABRT Abort process Core
SIGALRM Real-time timer expiration Term
SIGBUS Memory access error Core
SIGCHLD Child stopped or terminated Ignore
SIGCONT Continue if stopped Cont
SIGFPE Arithmetic exception Core
SIGHUP Hangup Term
SIGILL Illegal Instruction Core
SIGINT Interrupt from keyboard Term
SIGIO I/O Possible Term
SIGKILL Sure kill Term
SIGPIPE Broken pipe Term
SIGPROF Profiling timer expired Term
SIGPWR Power about to fail Term
SIGQUIT Terminal quit Core
SIGSEGV Invalid memory reference Core
SIGSTKFLT Stack fault on coprocessor Term
SIGSTOP Sure stop Stop
SIGSYS Invalid system call Core
SIGTERM Terminate process Term
SIGTRAP Trace/breakpoint trap Core
SIGTSTP Terminal stop Stop
SIGTTIN Terminal input from background Stop
SIGTTOU Terminal output from background Stop
SIGURG Urgent data on socket Ignore
SIGUSR1 User-defined signal 1 Term
SIGUSR2 User-defined signal 2 Term
SIGVTALRM Virtual timer expired Term
SIGWINCH Terminal window size changed Ignore
SIGXCPU CPU time limit exceeded Core
SIGXFSZ File size limit exceeded Core

Signal default actions are:

Term: terminate the process

Core: produce core dump and terminate the process

Ignore: ignore the signal

Stop: stop (suspend) the process

Cont: resume process (if stopped)

SIGKILL and SIGSTOP can’t be caught, blocked, or ignored

TLPI §20.2

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-10 §6.2

Stop and continue signals

Certain signals stop a process, freezing its execution

Examples:

SIGTSTP: “terminal stop” signal, generated by typing
Control-Z

SIGSTOP: “sure stop” signal

SIGCONT causes a stopped process to resume execution

SIGCONT is ignored if process is not stopped

Most common use of these signals is in shell job control

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-11 §6.2

Changing a signal’s disposition

Instead of default, we can change a signal’s disposition to:

Ignore the signal

Handle (“catch”) the signal: execute a user-defined
function upon delivery of the signal

Revert to the default action

Useful if we earlier changed disposition

Can’t change disposition to terminate or core dump

But, a signal handler can emulate these behaviors

Can’t change disposition of SIGKILL or SIGSTOP (EINVAL)

So, they always kill or stop a process

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-12 §6.2

Changing a signal’s disposition: sigaction()

include <signal .h>
int sigaction (int sig ,

const struct sigaction *act ,
struct sigaction * oldact);

sigaction() changes (and/or retrieves) disposition of signal sig

sigaction structure describes a signal’s disposition

act points to structure specifying new disposition for sig

Can be NULL for no change

oldact returns previous disposition for sig

Can be NULL if we don’t care

sigaction(sig, NULL, oldact) returns current
disposition, without changing it

[TLPI §20.13]

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-13 §6.2

sigaction structure

struct sigaction {
void (* sa_handler)(int);
sigset_t sa_mask ;
int sa_flags ;
void (* sa_restorer)(void);

};

sa_handler specifies disposition of signal:

Address of a signal handler function

SIG_IGN: ignore signal

SIG_DFL: revert to default disposition

sa_mask : signals to block while handler is executing

Field is initialized using macros described in sigsetops(3)

sa_flags : bit mask of flags affecting invocation of handler

sa_restorer : not for application use

Used internally to implement “signal trampoline”

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-14 §6.2

Ignoring a signal (signals/ignore_signal.c)

int ignoreSignal (int sig)
{

struct sigaction sa;

sa. sa_handler = SIG_IGN ;
sa. sa_flags = 0;
sigemptyset (&sa. sa_mask);
return sigaction (sig , &sa , NULL);

}

A “library function” that ignores specified signal

Other fields only significant when establishing a signal
handler, but must be properly initialized here

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-15 §6.2

Outline

6 Signals: Introduction 6-1
6.1 Overview of signals 6-3
6.2 Signal dispositions 6-8
6.3 Signal handlers 6-16
6.4 Useful signal-related functions 6-21
6.5 Signal sets, the signal mask, and pending signals 6-25

Signal handlers

Programmer-defined function

Called with one integer argument: number of signal

⇒ handler installed for multiple signals can differentiate...

Returns void

void
myHandler (int sig)
{

/* Actions to be performed when signal
is delivered */

}

[TLPI §20.4]

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-17 §6.3

Signal handler invocation

Automatically invoked by kernel when signal is delivered:

Can interrupt main program flow at any time

On return, execution continues at point of interruption

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-18 §6.3

Example: signals/ouch_sigaction.c

Print “Ouch!” when Control-C is typed at keyboard

static void sigHandler (int sig) {
printf ("Ouch !\n"); /* UNSAFE */

}

int main(int argc , char *argv []) {
struct sigaction sa;
sa. sa_flags = 0; /* No flags */
sa. sa_handler = sigHandler ; /* Handler function */
/* Don ’t block additional signals

during invocation of handler */
sigemptyset (&sa. sa_mask);

if (sigaction (SIGINT , &sa , NULL) == -1)
errExit (" sigaction ");

for (;;)
pause (); /* Wait for a signal */

}

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-19 §6.3

Exercise

While a signal is executing, the signal that caused it to be
invoked is (by default) temporarily added to the signal mask,
so that it is blocked from further delivery until the signal
handler returns. Consequently, execution of a signal handler
can’t be interrupted by a further execution of the same
handler. To demonstrate that this is so, modify the signal
handler in the signals/ouch_sigaction.c program to
include the following after the existing printf() statement:

sleep (5);
printf ("Bye\n");

Build and run the program, type control-C once, and then
while the signal handler is executing, type control-C three
more times. What happens? In total, how many times is the
signal handler called?

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-20 §6.3

Outline

6 Signals: Introduction 6-1
6.1 Overview of signals 6-3
6.2 Signal dispositions 6-8
6.3 Signal handlers 6-16
6.4 Useful signal-related functions 6-21
6.5 Signal sets, the signal mask, and pending signals 6-25

Displaying signal descriptions

define _GNU_SOURCE
include <string .h>
char * strsignal (int sig);

Returns string describing signal sig

NSIG constant is 1 greater than maximum signal number

Define _GNU_SOURCE to get definition from <signal.h>

[TLPI §20.8]

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-22 §6.4

Example: signals/t_strsignal.c

int main(int argc , char *argv []) {
for (int sig = 1; sig < NSIG; sig ++)

printf ("%2d: %s\n", sig , strsignal (sig));

exit(EXIT_SUCCESS);
}

$./ t_strsignal
1: Hangup
2: Interrupt
3: Quit
4: Illegal instruction
5: Trace / breakpoint trap
6: Aborted
7: Bus error
8: Floating point exception
9: Killed

10: User defined signal 1
11: Segmentation fault
12: User defined signal 2
13: Broken pipe
...

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-23 §6.4

Waiting for a signal: pause()

include <unistd .h>
int pause(void);

Blocks execution of caller until a signal is caught

Always returns –1 with errno set to EINTR

(Standard return for blocking system call that is interrupted
by a signal handler)

[TLPI §20.14]

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-24 §6.4

Outline

6 Signals: Introduction 6-1
6.1 Overview of signals 6-3
6.2 Signal dispositions 6-8
6.3 Signal handlers 6-16
6.4 Useful signal-related functions 6-21
6.5 Signal sets, the signal mask, and pending signals 6-25

Signal sets

Various signal-related APIs work with signal sets

Signal set == data structure that represents multiple signals

Data type: sigset_t

Typically a bit mask, but not necessarily

[TLPI §20.9]

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-26 §6.5

Manipulating signal sets

include <signal .h>
int sigemptyset (sigset_t *set);
int sigfillset (sigset_t *set);
int sigaddset (sigset_t *set , int sig);
int sigdelset (sigset_t *set , int sig);
int sigismember (const sigset_t *set , int sig);

sigemptyset() initializes set to contain no signals

sigfillset() initializes set to contain all signals

We must initialize set using sigemptyset() or sigfillset()
before employing macros below

Using memset() to zero a signal set is not correct

sigaddset() adds sig to set

sigdelset() removes sig from set

sigismember() returns 1 if sig is in set, 0 if it is not, or –1 on
error (e.g., sig is invalid)

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-27 §6.5

Blocking signals (the signal mask)

Each process has a signal mask–a set of signals whose
delivery is currently blocked

(In truth: each thread has a signal mask...)

If a blocked signal is generated, it remains pending until
removed from signal mask

The signal mask can be changed in various ways:

While handler is invoked, the signal that triggered the
handler is (temporarily) added to signal mask

While handler is invoked, any signals specified in sa_mask
are (temporarily) added to signal mask

Explicitly, using sigprocmask()

Attempts to block SIGKILL/SIGSTOP are silently ignored

[TLPI §20.10]

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-28 §6.5

sigprocmask()

include <signal .h>
int sigprocmask (int how , const sigset_t *set ,

sigset_t * oldset);

Adds signals to, or removes signals from, caller’s signal mask

(Typical use: prevent interruption by signal handler while
updating a shared data structure)

how specifies change to signal mask:

SIG_BLOCK: add signals in set to signal mask

SIG_UNBLOCK: remove signals in set from signal mask

SIG_SETMASK: assign set to signal mask

[TLPI §20.10]

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-29 §6.5

sigprocmask()

include <signal .h>
int sigprocmask (int how , const sigset_t *set ,

sigset_t * oldset);

oldset returns previous signal mask

Can be NULL if we don’t care

sigprocmask(how, NULL, oldset) retrieves current mask
without changing it

how is ignored

[TLPI §20.10]

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-30 §6.5

Example: temporarily blocking a signal

The following code snippet shows how to temporarily block
a signal (SIGINT) while executing a block of code

sigset_t blocking , prev;

sigemptyset (& blocking);
sigaddset (& blocking , SIGINT);
sigprocmask (SIG_BLOCK , &blocking , &prev);

/* ... Code to execute with SIGINT blocked ... */

sigprocmask (SIG_SETMASK , &prev , NULL);

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-31 §6.5

Pending signals

include <signal .h>
int sigpending (sigset_t *set);

Between generation and delivery, a signal is pending

Pending state is normally unobservable unless signal is
explicitly blocked

sigpending() returns (in set) the set of signals currently
pending for caller

We do not need to initialize set before calling sigpending()

Can examine set using sigismember() :

sigset_t pending ;
sigpending (& pending);
if (sigismember (& pending , SIGINT))

printf (" SIGINT (%s) is pending \n",
strsignal (SIGINT));

[TLPI §20.11]

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-32 §6.5

Signals are not queued

The set of pending (standard) signals is a mask

⇒ If same signal is generated multiple times while blocked,
it will be delivered just once

By contrast, realtime signals do queue

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-33 §6.5

Exercises

The goal of this exercise is experiment with signal handlers and the use of
the signal mask to block delivery of signals. A template for the complete
exercise is provided ([template: signals/ex.pending_sig_expt.c])

Hint: don’t confuse the sa_mask field that is passed to sigaction(), which
specifies additional signals that should be temporarily blocked while a signal
handler is executing, with the use of sigprocmask(), which allows a process
to directly modify its signal mask.

1 Write a program that:

Blocks all signals except SIGINT (sigprocmask(), slides 6-30 +
6-31).

Uses sigaction() (slides 6-13 + 6-14) to establish a SIGINT

handler that does nothing but return.

Calls pause() to wait for a signal.

[Exercise continues on following slides]

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-34 §6.5

Exercises

After pause() returns, determines the set of pending signals for
the process (use sigpending(), slide 6-32), tests which signals are
in that set (use sigismember(), iterating through all signals in the
range 1 <= s < NSIG), and prints their descriptions (strsignal()).

Run the program and send it various signals (other than SIGINT and
signals that are ignored by default) using the kill command
(kill -<sig> <pid>). Then type Control-C to generate SIGINT and
inspect the list of pending signals.

2 What happens if you send SIGKILL to the preceding program? Why?

3 Extend the program created in the preceding exercise so that:

Just after installing the handler for SIGINT, the program installs
an additional handler for SIGQUIT (generated when the
Control-\ key is pressed). The handler should print a message
“SIGQUIT received”, and return.

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-35 §6.5

Exercises

After displaying the list of pending signals, the program unblocks
SIGQUIT and calls pause() once more. (B Which how value
should be given to sigprocmask() ?)

While the program is blocking signals (i.e., before typing Control-C),
try typing Control-\ multiple times. After Control-C is typed, how
many times does the SIGQUIT handler display its message? Why?

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Introduction 6-36 §6.5

Linux/UNIX System Programming Fundamentals

Signals: Signal Handlers

Michael Kerrisk, man7.org © 2020

mtk@man7.org

NDC TechTown
August 2020

Outline

7 Signals: Signal Handlers 7-1
7.1 Designing signal handlers 7-3
7.2 Async-signal-safe functions 7-7
7.3 Interrupted system calls 7-19
7.4 SA_SIGINFO signal handlers 7-23
7.5 The signal trampoline 7-27

Outline

7 Signals: Signal Handlers 7-1
7.1 Designing signal handlers 7-3
7.2 Async-signal-safe functions 7-7
7.3 Interrupted system calls 7-19
7.4 SA_SIGINFO signal handlers 7-23
7.5 The signal trampoline 7-27

Keep it simple

Signal handlers can, in theory, do anything

But, complex signal handlers can easily have subtle bugs
(e.g., race conditions)

E.g., if main program and signal handler access same global
variables

⇒ Avoid using signals if you can
B Don’t introduce them as a means of IPC

B Don’t use as part of a library design

(That would imply a contract with main program about
which signals library is allowed to use)

But, in some cases, we must deal with signals sent by kernel

⇒ Design the handlers to be as simple as possible

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Signal Handlers 7-4 §7.1

Keep it simple

Some simple signal-handler designs:
Set a global flag and return

Main program periodically checks (and clears) flag, and
takes appropriate action

Signal handler does some clean-up and terminates process

(TLPI §21.2)

Signal handler performs a nonlocal goto to unwind stack

sigsetjmp() and siglongjmp() (TLPI §21.2.1)

E.g., some shells do this when handling signals

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Signal Handlers 7-5 §7.1

Signals are not queued

Signals are not queued

A blocked signal is marked just once as pending, even if
generated multiple times

⇒ One signal may correspond to multiple “events”

Programs that handle signals must be designed to allow for
this

Example:

SIGCHLD is generated for parent when child terminates

While SIGCHLD handler executes, SIGCHLD is blocked

Suppose two more children terminate while handler
executes

Only one SIGCHLD signal will be queued

Solution: SIGCHLD handler should loop, checking if multiple
children have terminated

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Signal Handlers 7-6 §7.1

Outline

7 Signals: Signal Handlers 7-1
7.1 Designing signal handlers 7-3
7.2 Async-signal-safe functions 7-7
7.3 Interrupted system calls 7-19
7.4 SA_SIGINFO signal handlers 7-23
7.5 The signal trampoline 7-27

Reentrancy

Signal handler can interrupt a program at any moment
⇒ handler and main program are semantically equivalent
to two simultaneous flows of execution inside process

(Like two “threads”, but not the same as POSIX threads)

A function is reentrant if it can safely be simultaneously
executed by multiple threads

Safe == function achieves same result regardless of state of
other threads of execution

[TLPI §21.1.2]

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Signal Handlers 7-8 §7.2

Nonreentrant functions

Functions that update global/static variables are not reentrant:

Some functions by their nature operate on global data
e.g., malloc() and free() maintain a global linked list of free
memory blocks

Suppose main program is executing free() and is interrupted
by a signal handler that also calls free()...

Two “threads” updating linked list at same time ⇒ chaos!

Functions that return results in statically allocated memory
are nonreentrant

e.g., getpwnam() and many other functions in C library

Functions that use static data structures for internal
bookkeeping are nonreentrant

e.g., stdio functions do this for buffered I/O

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Signal Handlers 7-9 §7.2

Nonreentrant functions

C library is rife with nonreentrant functions!

Man pages usually note functions that are nonreentrant

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Signal Handlers 7-10 §7.2

Async-signal-safe functions

An async-signal-safe function is one that can be safely called
from a signal handler

A function can be async-signal-safe because either

It is reentrant

It is not interruptible by a signal handler

(Atomic with respect to signals)

POSIX specifies a set of functions required to be
async-signal-safe

See signal-safety(7) or TLPI Table 21-1

Set is a small minority of functions specified in POSIX

No guarantees about functions not on the list
B stdio functions are not on the list

[TLPI §21.1.2]

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Signal Handlers 7-11 §7.2

Signal handlers and async-signal-safety

Executing a function inside a signal handler is unsafe only if
handler interrupted execution of an unsafe function

⇒ Two choices:
1 Ensure that signal handler calls only async-signal-safe

functions

2 Main program blocks signals when calling unsafe functions
or working with global data also used by handler

Second choice can be difficult to implement in complex
programs

⇒ Simplify rule: call only async-signal-safe functions inside
a signal handler

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Signal Handlers 7-12 §7.2

Signal handlers can themselves be nonreentrant

B Signal handler can also be nonreentrant if it updates
global data used by main program

A common case: handler calls functions that update errno

Solution:

void
handler (int sig)
{

int savedErrno ;
savedErrno = errno;

/* Execute functions that might
modify errno */

errno = savedErrno ;
}

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Signal Handlers 7-13 §7.2

The sig_atomic_t data type

Contradiction:

Good design: handler sets global flag checked by main()

Sharing global variables between handler & main() is unsafe

Because accesses may not be atomic

[TLPI §21.1.3]

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Signal Handlers 7-14 §7.2

The sig_atomic_t data type

POSIX defines an integer data type that can be safely shared
between handler and main() :

sig_atomic_t

Range: SIG_ATOMIC_MIN..SIG_ATOMIC_MAX (<stdint.h>)

Read and write guaranteed atomic

B Other operations (e.g., ++ and --) not guaranteed
atomic (i.e., not safe)

Specify volatile qualifier to prevent optimizer tricks

volatile sig_atomic_t flag;

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Signal Handlers 7-15 §7.2

Exercises

1 Examine the source code of the program signals/unsafe_printf.c,

which can be used to demonstrate that calling printf() both from the

main program and from a signal handler is unsafe. The program

performs the following steps:

Establishes a handler for the SIGINT signal (the control-C signal).
The handler uses printf() to print out the string “sssss\n”.

After the main program has established the signal handler, it
pauses until control-C is pressed for the first time, and then loops
forever using printf() to print out the string “mmmmm\n”

Before running the program, start up two shells in separate terminal
windows as follows (the ls command will display an error until the
out.txt file is actually created):

$ watch ps -C unsafe_printf

$ cd signals
$ watch ls -l out.txt

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Signal Handlers 7-16 §7.2

Exercises

In another terminal window, run the unsafe_printf program as follows,
and then hold down the control-C key continuously:

$ cd signals
$./ unsafe_printf > out.txt
^C^C^C

Observe the results from the watch commands in the other two
terminal windows. After some time, it is likely that you will see that
the file stops growing in size, and that the program ceases consuming
CPU time because of a deadlock in the stdio library. Even if this does
not happen, after holding the control-C key down for 15 seconds, kill
the program using control-\.

Inside the out.txt file, there should in theory be only lines that
contain “mmmmm\n” or “sssss\n”. However, because of unsafe
executions of printf(), it is likely that there will be lines containing
other strings. Verify this using the following command:

$ egrep -n -v ’^(mmmmm | sssss)$’ < out.txt

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Signal Handlers 7-17 §7.2

Exercises

2 Examine the source code of signals/unsafe_malloc.c, which can
be used to demonstrate that calling malloc() and free() from both the
main program and a signal handler is unsafe. Within this program, a
handler for SIGINT allocates multiple blocks of memory using malloc()
and then frees them using free(). Similarly, the main program contains
a loop that allocates multiple blocks of memory and then frees them.

In one terminal window, run the following command:

$ watch -n 1 ps -C unsafe_malloc

In another terminal window, run the unsafe_malloc program, and then

hold down the control-C key until either:

you see the program crash with a corruption diagnostic from
malloc() or free() ; or

the ps command shows that the amount of CPU time consumed
by the process has ceased to increase, indicating that the
program has deadlocked inside a call to malloc() or free().

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Signal Handlers 7-18 §7.2

Outline

7 Signals: Signal Handlers 7-1
7.1 Designing signal handlers 7-3
7.2 Async-signal-safe functions 7-7
7.3 Interrupted system calls 7-19
7.4 SA_SIGINFO signal handlers 7-23
7.5 The signal trampoline 7-27

Interrupted system calls

What if a signal handler interrupts a blocked system call?

Example:

Install handler for (say) SIGALRM

Perform a read() on terminal that blocks, waiting for input

SIGALRM is delivered

What happens when handler returns?

read() fails with EINTR (“interrupted system call”)

Can deal with this by manually restarting call:

while ((cnt = read(fd , buf , BUF_SIZE)) == -1
&& errno == EINTR)

continue ; /* Do nothing loop body */
if (cnt == -1) /* Error other than EINTR */

errExit ("read");

[TLPI §21.5]

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Signal Handlers 7-20 §7.3

Automatically restarting system calls: SA_RESTART

Specifying SA_RESTART in sa_flags when installing a handler
causes system calls to automatically restart

SA_RESTART is a per-signal flag

More convenient than manually restarting, but...

Not all system calls automatically restart

Set of system calls that restart varies across UNIX systems

(Origin of variation is historical)

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Signal Handlers 7-21 §7.3

Automatically restarting system calls: SA_RESTART

Most (all?) modern systems restart at least:

wait(), waitpid()

I/O system calls on “slow devices”

i.e., devices where I/O can block (pipes, sockets, ...)

read(), readv(), write(), writev()

On Linux:

Certain other system calls also automatically restart

Remaining system calls never restart, regardless of
SA_RESTART

See TLPI §21.5 and signal(7) for details

Bottom line: If you need cross-system portability, omit
SA_RESTART and always manually restart

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Signal Handlers 7-22 §7.3

Outline

7 Signals: Signal Handlers 7-1
7.1 Designing signal handlers 7-3
7.2 Async-signal-safe functions 7-7
7.3 Interrupted system calls 7-19
7.4 SA_SIGINFO signal handlers 7-23
7.5 The signal trampoline 7-27

Receiving extra signal information: SA_SIGINFO

Specifying SA_SIGINFO in sa_flags argument of sigaction()
causes signal handler to be invoked with extra arguments

Handler declared as:

void handler (int sig , siginfo_t *siginfo ,
void * ucontext);

sig is the signal number

siginfo points to structure returning extra info about signal

ucontext is rarely used (no portable uses)

See getcontext(3) and swapcontext(3)

[TLPI §21.4]

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Signal Handlers 7-24 §7.4

Receiving extra signal information: SA_SIGINFO

Handler address is passed via act.sa_sigaction field (not the
usual act.sa_handler)

struct sigaction act;

sigemptyset (& act. sa_mask);
act. sa_sigaction = handler ;
act. sa_flags = SA_SIGINFO ;
sigaction (SIGINT , &act , NULL);

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Signal Handlers 7-25 §7.4

The siginfo_t data type

siginfo_t is a structure containing additional info about
delivered signal; fields include:

si_signo : signal number (same as first arg. to handler)

si_code : additional info about cause of signal

si_pid : PID of process sending signal (if sent by a process)

si_uid : real UID of sending process (if sent by a process)

si_value : data accompanying realtime signal sent with
sigqueue()

And other signal-type-specific fields, such as:

si_addr : memory location that caused fault; filled in for
hardware-generated signals (SIGSEGV, SIGFPE, etc.)

si_fd : FD that generated a signal (signal-driven I/O)

See sigaction(2) and TLPI §21.4 for more information

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Signal Handlers 7-26 §7.4

Outline

7 Signals: Signal Handlers 7-1
7.1 Designing signal handlers 7-3
7.2 Async-signal-safe functions 7-7
7.3 Interrupted system calls 7-19
7.4 SA_SIGINFO signal handlers 7-23
7.5 The signal trampoline 7-27

The problem

Before executing signal handler, kernel must modify some
kernel-maintained process context

Signal mask, signal stack (sigaltstack())

(Registers will also be modified during handler execution,
and so must be saved)

Easy, because kernel has control at this point

Upon return from signal handler, previous context must be
restored

But, at this point we are in user mode; kernel has no control

How does kernel regain control in order to restore
context?

⇒ the “signal trampoline”

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Signal Handlers 7-28 §7.5

The “signal trampoline”

main program

signal

handler

return

trampoline

sigreturn()

interrupt handler completes

(kernel reschedules process)

signal is pending!

save context + build frame

for handler in user space

restore context

return from interrupt

hardware interrupt

User space Kernel space

The kernel uses the signal trampoline to arrange that control is
bounced back to kernel after execution of signal handler

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Signal Handlers 7-29 §7.5

When is a signal delivered?

In a moment, we consider what’s required to execute a
signal handler

But first of all, when is a signal delivered?

Signals are asynchronously delivered to process, but...

Only on transitions from kernel space back to user space

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Signal Handlers 7-30 §7.5

Steps in the execution of a signal handler

The following steps occur in the execution of a signal handler:

A hardware interrupt occurs

E.g., scheduler timer interrupt, or syscall trap instruction

Process is scheduled off CPU

Kernel gains control & receives various process context info,
which it saves

E.g., register values (program counter, stack pointer, etc.)

Upon completion of interrupt handling, kernel chooses a
process to schedule, and discovers it has a pending signal

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Signal Handlers 7-31 §7.5

Steps in the execution of a signal handler

To allow signal to be handled, the kernel:
Saves process context information onto user-space stack

Context == CPU registers (PC, SP), signal mask, and more

Saved context will be used later by sigreturn()...

See, e.g., struct rt_sigframe definition in
arch/x86/include/asm/sigframe.h

Saved context information is visible via third argument of SA_SIGINFO

handler, which is really ucontext_t * ; see also ucontext_t definition in
<sys/ucontext.h>

Constructs frame on user-space stack for signal handler

Sets return address in frame to point to “signal trampoline”

Rearranges trap return address so that upon return to user
space, control passes to signal handler

Control returns to user space

Handler is called; handler returns to trampoline

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Signal Handlers 7-32 §7.5

Steps in the execution of a signal handler

Trampoline code calls sigreturn(2)

Now, the kernel once more has control!

sigreturn() restores signal context

Signal mask, alternate signal stack

sigreturn() restores saved registers

Including program counter ⇒ next return to user space will
resume execution where handler interrupted main program

Info needed by sigreturn() to do its work was saved earlier
on user-space stack

For example, see code of, and calls to, setup_sigcontext() and
restore_sigcontext() in kernel source file arch/x86/kernel/signal.c

Trampoline code is in user space (in C library or vdso(7))

If in C library, address is made available to kernel via
sa_restorer field (done by sigaction() wrapper function)

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Signal Handlers 7-33 §7.5

sigreturn()

sigreturn() :

Special system call used only by signal trampoline

Uses saved context to restore state and resume program
execution at point where it was interrupted by handler

Frame of

interrupted function

in main program

Signal context

(Saved registers,

signal mask, etc.)

Frame for

signal handler

1. Stack while

signal handler

is executing

Frame of

interrupted function

in main program

Signal context

(Saved registers,

signal mask, etc.)

2. Stack upon

return into

trampoline code

Frame of

interrupted function

in main program

3. Stack after

sigreturn() completes

and main resumes

System Programming Fundamentals ©2020, Michael Kerrisk Signals: Signal Handlers 7-34 §7.5

Notes

Notes

Linux/UNIX System Programming Fundamentals

Process Lifecycle

Michael Kerrisk, man7.org © 2020

mtk@man7.org

NDC TechTown
August 2020

Outline

8 Process Lifecycle 8-1
8.1 Introduction 8-3
8.2 Creating a new process: fork() 8-6
8.3 Process termination 8-12
8.4 Monitoring child processes 8-18
8.5 Orphans and zombies 8-29
8.6 The SIGCHLD signal 8-37
8.7 Executing programs: execve() 8-41

Outline

8 Process Lifecycle 8-1
8.1 Introduction 8-3
8.2 Creating a new process: fork() 8-6
8.3 Process termination 8-12
8.4 Monitoring child processes 8-18
8.5 Orphans and zombies 8-29
8.6 The SIGCHLD signal 8-37
8.7 Executing programs: execve() 8-41

Creating processes and executing programs

Four key system calls (and their variants):

fork() : create a new (“child”) process

exit() : terminate calling process

wait() : wait for a child process to terminate

execve() : execute a new program in calling process

[TLPI §24.1]

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-4 §8.1

Using fork(), execve(), wait(), and exit() together

Parent process

running program A

fork()

Parent may perform

other actions here

wait(&wstatus)

Execution of

parent blocks

Child process

running program A

execve(B, ...)

Child process

running program B

exit(status)

Memory of parentcopied to child

Kernel unblocks parent

and delivers SIGCHLD

Child status
passed to parent

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-5 §8.1

Outline

8 Process Lifecycle 8-1
8.1 Introduction 8-3
8.2 Creating a new process: fork() 8-6
8.3 Process termination 8-12
8.4 Monitoring child processes 8-18
8.5 Orphans and zombies 8-29
8.6 The SIGCHLD signal 8-37
8.7 Executing programs: execve() 8-41

Creating a new process: fork()

include <unistd .h>
pid_t fork(void);

fork() creates a new process (“the child”):

Child is a near exact duplicate of caller (“the parent”)

Notionally, memory of parent is duplicated to create child
In practice, copy-on-write duplication is used

⇒ Only page tables must be duplicated at time of fork()

Two processes share same (read-only) text segment

Two processes have separate copies of stack, data, and heap
segments

⇒ Each process can modify variables without affecting
other process

[TLPI §24.2]

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-7 §8.2

Return value from fork()

include <unistd .h>
pid_t fork(void);

Both processes continue execution by returning from fork()

fork() returns different values in parent and child:
Parent:

On success: PID of new child (allows parent to track child)

On failure: –1

Child: returns 0

Child can obtain its own PID using getpid()

Child can obtain PID of parent using getppid()

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-8 §8.2

Using fork()

pid_t pid;

pid = fork ();

if (pid == -1) {

/* Handle error */ ;

} else if (pid == 0) {

/* Code executed by child */

} else {

/* Code executed by parent */

}

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-9 §8.2

Exercise

1 Write a program that uses fork() to create a child process
([template: procexec/ex.fork_var_test.c]). After the
fork() call, both the parent and child should display their
PIDs (getpid()). Include code to demonstrate that the child
process created by fork() can modify its copy of a local
variable in main() without affecting the value in the parent’s
copy of the variable.

Note: you may find it useful to use the sleep(num-secs)
library function to delay execution of the parent for a few
seconds, to ensure that the child has a chance to execute
before the parent inspects its copy of the variable.

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-10 §8.2

Exercise

2 Processes have many attributes. When a new process is created using fork(), which
of those attributes are inherited by the child and which are not (e.g., are reset to
some default)? Here, we explore whether two process attribute–signal dispostions
and alarm timers–are inherited by a child process.

Write a program ([template: procexec/ex.inherit_alarm.c]) that performs the
following steps in order to determine if a child process inherits signal dispositions
and alarm timers from the parent:

Establishes a SIGALRM handler that prints the process’s PID.

Starts an alarm timer that expires after two seconds. Do this using the call
alarm(2). When the timer expires, it will notify by sending a SIGALRM signal
to the process.

Creates a child process using fork().

After the fork(), the child fetches the disposition of the SIGALARM signal
(sigaction()) and tests whether the sa_handler field in the returned structure
is the address of the signal handler

Both processes then loop 5 times, sleeping for half a second (use usleep())
and displaying the process PID. Which of the processes receives a SIGALRM

signal?

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-11 §8.2

Outline

8 Process Lifecycle 8-1
8.1 Introduction 8-3
8.2 Creating a new process: fork() 8-6
8.3 Process termination 8-12
8.4 Monitoring child processes 8-18
8.5 Orphans and zombies 8-29
8.6 The SIGCHLD signal 8-37
8.7 Executing programs: execve() 8-41

Terminating a process

A process can terminate itself using two APIs:

_exit(2) (system call)

exit(3) (library function)

[TLPI §25.1]

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-13 §8.3

Terminating a process with _exit(2)

include <unistd .h>
void _exit(int status);

_exit() terminates the calling process

AKA normal termination

abnormal termination == killed by a signal

(In truth: on Linux, _exit() is a wrapper for Linux-specific
exit_group(2), which terminates all threads in a process)

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-14 §8.3

Process exit status

include <unistd .h>
void _exit(int status);

Least significant 8 bits of status define exit status

Remaining bits ignored

0 == success

nonzero == failure

POSIX specifies two constants:

define EXIT_SUCCESS 0
define EXIT_FAILURE 1

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-15 §8.3

Terminating a process with exit(3)

Most programs employ exit(3), rather than _exit(2)

include <stdlib .h>
void exit(int status);

The exit(3) library function:
Calls exit handlers registered by process

Exit handler == callback function automatically called at
normal process termination

atexit(3), on_exit(3)

Flushes stdio buffers

i.e., _exit() does not flush stdio buffers

Calls: _exit(status)

return n inside main() is equivalent to exit(n)

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-16 §8.3

Process teardown

As part of process termination (normal or abnormal), various
cleanups are performed:

All open file descriptors are closed

Associated file locks are released

Open POSIX IPC objects are closed (message queues,
semaphores, shared memory)

Memory mappings are unmapped

Memory locks are removed

System V shared memory segments are detached

And more...

[TLPI §25.2]

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-17 §8.3

Outline

8 Process Lifecycle 8-1
8.1 Introduction 8-3
8.2 Creating a new process: fork() 8-6
8.3 Process termination 8-12
8.4 Monitoring child processes 8-18
8.5 Orphans and zombies 8-29
8.6 The SIGCHLD signal 8-37
8.7 Executing programs: execve() 8-41

Overview

Parent processes can use the “wait” family of system calls to
monitor state change events in child processes:

Termination

Stop (because of a signal)

Continue (after SIGCONT signal)

Parent can obtain various info about state changes:

Exit status of process

What signal stopped or killed process

Whether process produced a core dump before terminating

For historical reasons, there are multiple “wait” functions

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-19 §8.4

Waiting for children with waitpid()

include <sys/wait.h>
pid_t waitpid (pid_t pid , int *wstatus , int options);

waitpid() waits for a child process to change state

No child has changed state ⇒ call blocks

Child has already changed state ⇒ call returns immediately

State change is reported in wstatus (if non-NULL)

(details later...)

Return value:

On success: PID of child whose status is being reported

On error, –1

No more children? ⇒ ECHILD

[TLPI §26.1.2]

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-20 §8.4

Waiting for children with waitpid()

include <sys/wait.h>
pid_t waitpid (pid_t pid , int *wstatus , int options);

pid specifies which child(ren) to wait for:

pid == –1 : any child of caller

pid > 0 : child whose PID equals pid

pid == 0 : any child in same process group as caller

pid < –1 : any child in process group whose ID
equals abs(pid)

See credentials(7) and setpgid(2) for info on process groups

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-21 §8.4

Waiting for children with waitpid()

include <sys/wait.h>
pid_t waitpid (pid_t pid , int *wstatus , int options);

By default, waitpid() reports only terminated children

The options bit mask can specify additional state changes to
report:

WUNTRACED: report stopped children

WCONTINUED: report stopped children that have continued

Specifying WNOHANG in options causes nonblocking wait

If no children have changed state, waitpid() returns
immediately, with return value of 0

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-22 §8.4

waitpid() example

Wait for all children to terminate, and report their PIDs:

for (;;) {
childPid = waitpid (-1, NULL , 0);
if (childPid == -1) {

if (errno == ECHILD) {
printf ("No more children !\n");
break ;

} else { /* Unexpected error */
errExit ("wait");

}
}

printf (" waitpid () returned PID %ld\n",
(long) childPid);

}

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-23 §8.4

The wait status value

wstatus returned by waitpid() distinguishes 4 types of event:

Child terminated via _exit(), specifying an exit status

Child was killed by a signal

Child was stopped by a signal

Child was continued by a signal

The term wait status encompasses all four cases

The term termination status covers the first two cases

In the shell, termination status of last command is available
via $?

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-24 §8.4

The wait status value

16 lowest bits of wstatus returned by waitpid() encode status in
such a way that the 4 cases can be distinguished:

(Encoding is an implementation detail we don’t really need to care about)

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-25 §8.4

Dissecting the wait status

<sys/wait.h> defines macros for dissecting a wait status

Only one of the headline macros in this list will return true:
1 WIFEXITED(wstatus): true if child exited normally

WEXITSTATUS(wstatus) returns exit status of child

2 WIFSIGNALED(wstatus): true if child was killed by signal

WTERMSIG(wstatus) returns number of killing signal

WCOREDUMP(wstatus) returns true if child dumped core

3 WIFSTOPPED(wstatus): true if child was stopped by signal

WSTOPSIG(wstatus) returns number of stopping signal

4 WIFCONTINUED(wstatus): true if child was resumed by
SIGCONT

The subordinate macros may be used only if the
corresponding headline macro tests true

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-26 §8.4

Example: procexec/print_wait_status.c

Display wait status value in human-readable form

1 void printWaitStatus (const char *msg , int status) {
2 if (msg != NULL)
3 printf ("%s", msg);
4 if (WIFEXITED (status)) {
5 printf ("child exited , status =%d\n",
6 WEXITSTATUS (status));
7 } else if (WIFSIGNALED (status)) {
8 printf ("child killed by signal %d (%s)",
9 WTERMSIG (status),

10 strsignal (WTERMSIG (status)));
11 if (WCOREDUMP (status))
12 printf (" (core dumped)");
13 printf ("\n");
14 } else if (WIFSTOPPED (status)) {
15 printf ("child stopped by signal %d (%s)\n",
16 WSTOPSIG (status),
17 strsignal (WSTOPSIG (status)));
18 } else if (WIFCONTINUED (status))
19 printf ("child continued \n");
20 }

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-27 §8.4

An older wait API: wait()

include <sys/wait.h>
pid_t wait(int * wstatus);

The original “wait” API

Equivalent to: waitpid(-1, &wstatus, 0);

Still commonly used to handle the simple, common case:
wait for any child to terminate

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-28 §8.4

Outline

8 Process Lifecycle 8-1
8.1 Introduction 8-3
8.2 Creating a new process: fork() 8-6
8.3 Process termination 8-12
8.4 Monitoring child processes 8-18
8.5 Orphans and zombies 8-29
8.6 The SIGCHLD signal 8-37
8.7 Executing programs: execve() 8-41

Orphans

An orphan is a process that lives longer than its parent

Orphaned processes are adopted by init

init waits for its adopted children when they terminate

After orphan is adopted, getppid() returns PID of init

Conventionally, init has PID 1

On systems using upstart as init system, or systemd in some
configurations, things are different

A helper process (PID != 1) becomes parent of orphaned
children

When run with the --user option, systemd organizes all
processes in the user’s session into a subtree with such a
subreaper

See discussion of PR_SET_CHILD_SUBREAPER in prctl(2)

[TLPI §26.2]

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-30 §8.5

Zombies

Suppose a child terminates before parent waits for it

Parent must still be able to collect status later

⇒ Child becomes a zombie:

Most process resources are recycled

A process slot is retained

PID, status, and resource usage statistics

Zombie is removed when parent does a “wait”

[TLPI §26.2]

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-31 §8.5

Creating a zombie: procexec/zombie.c

int main(int argc , char *argv []) {
int nzombies = (argc > 1) ? atoi(argv [1]) : 1;
printf (" Parent (PID %ld)\n", (long) getpid ());

for (int j = 0; j < nzombies ; j++) {
switch (fork ()) {
case -1:

errExit ("fork -%d", j);
case 0: /* Child : exits to become zombie */

printf (" Child (PID %ld) exiting \n", (long) getpid ());
exit(EXIT_SUCCESS);

default : /* Parent continues in loop */
break;

}
}

sleep (600); /* Children are zombies during this time */
while (wait(NULL) > 0) /* Reap zombie children */

continue ;
exit(EXIT_SUCCESS);

}

Create one or more zombie child processes

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-32 §8.5

Creating a zombie: procexec/zombie.c

1 $./ zombie &
2 [1] 23425
3 Parent (PID 23425)
4 Child (PID 23427) exiting
5 $ ps -C zombie
6 PID TTY TIME CMD
7 23425 pts /1 00:00:00 zombie
8 23427 pts /1 00:00:00 zombie <defunct >
9 $ kill -KILL 23427

10 $ ps -C zombie
11 PID TTY TIME CMD
12 23425 pts /1 00:00:00 zombie
13 23427 pts /1 00:00:00 zombie <defunct >

Zombies can’t be killed by signals!

(Since parent must still be able to “wait”)

Even silver bullets (SIGKILL) don’t work

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-33 §8.5

Reap your zombies

Zombie may live for ever, if parent fails to “wait” on it

Or until parent is killed, so zombie is adopted by init

Long-lived processes that create children must ensure
that zombies are “reaped” (“waited” for)

Shells, network servers, ...

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-34 §8.5

Exercise

1 Suppose that we have three processes related as grandparent, parent,
and child, and that the parent exits after a few seconds, but the
grandparent does not immediately perform a wait() after the parent
exits, with the result that the parent becomes a zombie, as in the
following diagram.

A

fork()

B

fork()

sleep(3)

exit() 1

C
sleep(6)

waitpid(B) 2

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-35 §8.5

Exercise

When do you expect the child to be adopted by init (so that getppid()
in the child returns 1): after the parent terminates or after the
grandparent does a wait() ? In other words, is the child adopted at
point 1 or point 2 in the diagram? Write a program,
[(minimal) template: procexec/ex.grandchild_zombie.c], to
verify the answer.

Note the following points:

You will probably want to use calls to sleep() so that you can more easily

observe the steps that occur during execution of the program. For example:

The grandchild could loop 10 times, displaying the value returned by
getppid() and sleeping for 1 second on each loop iteration.

The parent could sleep for 3 seconds before terminating.

The grandparent could sleep for 6 seconds before calling wait()

Depending on your distribution (e.g., if you are running a Linux distribution
that uses upstart as the init program, or a systemd-based system where the
--user flag is employed), you will see slightly different results from those
described above. In particular, the orphaned child is reparented to a process
other than PID 1.

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-36 §8.5

Outline

8 Process Lifecycle 8-1
8.1 Introduction 8-3
8.2 Creating a new process: fork() 8-6
8.3 Process termination 8-12
8.4 Monitoring child processes 8-18
8.5 Orphans and zombies 8-29
8.6 The SIGCHLD signal 8-37
8.7 Executing programs: execve() 8-41

The SIGCHLD signal

SIGCHLD is generated for a parent when a child terminates

Ignored by default

Catching SIGCHLD allows us to be asynchronously notified of
child’s termination

Can be more convenient than synchronous or nonblocking
waitpid() calls

Within SIGCHLD handler, we “wait” to reap zombie child

[TLPI §26.3]

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-38 §8.6

A SIGCHLD handler

1 void grimReaper (int sig) {
2 int savedErrno = errno;
3 while (waitpid (-1, NULL , WNOHANG) > 0)
4 continue ;
5 errno = savedErrno ;
6 }

Each waitpid() call reaps one terminated child

while loop handles possibility that multiple children terminated
while SIGCHLD was blocked

e.g., during earlier invocation of handler

WNOHANG ensures handler does not block if there are no more
terminated children

Loop terminates when waitpid() returns:

0, meaning no more terminated children

–1, probably with errno == ECHILD, meaning no more children

Handler saves and restores errno, so that it is reentrant

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-39 §8.6

SIGCHLD for stopped and continued children

SIGCHLD is also generated when a child stops or continues

To prevent this, specify SA_NOCLDSTOP in sa_flags when
establishing SIGCHLD handler with sigaction()

[TLPI §26.3.2]

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-40 §8.6

Outline

8 Process Lifecycle 8-1
8.1 Introduction 8-3
8.2 Creating a new process: fork() 8-6
8.3 Process termination 8-12
8.4 Monitoring child processes 8-18
8.5 Orphans and zombies 8-29
8.6 The SIGCHLD signal 8-37
8.7 Executing programs: execve() 8-41

Executing a new program

execve() loads a new program into caller’s memory

Old program, stack, data, and heap are discarded

After executing run-time start-up code, execution
commences in new program’s main()

Various functions layered on top of execve() :

Provide variations on functionality of execve()

Collectively termed “exec()”

See exec(3) man page

[TLPI §27.1]

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-42 §8.7

Executing a new program with execve()

include <unistd .h>
int execve (const char *pathname , char * const argv [],

char * const envp []);

execve() loads program at pathname into caller’s memory

pathname is an absolute or relative pathname

argv specifies command-line arguments for new program

Defines argv argument for main() in new program

NULL-terminated array of pointers to strings

argv[0] is command name

Normally same as basename part of pathname

Program can vary its behavior, depending on value of
argv[0]

busybox

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-43 §8.7

Executing a new program with execve()

include <unistd .h>
int execve (const char *pathname , char * const argv [],

char * const envp []);

envp specifies environment list for new program

Defines environ in new program

NULL-terminated array of pointers to strings

Successful execve() does not return

If execve() returns, it failed; no need to check return value:

execve (pathname , argv , envp);
printf (" execve () failed \n");

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-44 §8.7

Example: procexec/exec_status.c

./ exec_status command [args ...]

Create a child process

Child executes command with supplied command-line
arguments

Parent waits for child to exit, and reports wait status

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-45 §8.7

Example: procexec/exec_status.c

1 extern char ** environ ;
2 int main(int argc , char *argv []) {
3 pid_t childPid , wpid;
4 int wstatus ;
5 ...
6 switch (childPid = fork ()) {
7 case -1: errExit ("fork");
8 case 0: /* Child */
9 printf ("PID of child : %ld\n",

10 (long) getpid ());
11 execve (argv [1] , &argv [1] , environ);
12 errExit (" execve ");
13 default : /* Parent */
14 wpid = waitpid (childPid , &wstatus , 0);
15 if (wpid == -1) errExit (" waitpid ");
16 printf ("Wait returned PID %ld\n",
17 (long) wpid);
18 printWaitStatus (" ", wstatus);
19 }
20 exit(EXIT_SUCCESS);
21 }

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-46 §8.7

Example: procexec/exec_status.c

1 $./ exec_status /bin/date
2 PID of child : 4703
3 Thu Oct 24 13:48:44 NZDT 2013
4 Wait returned PID 4703
5 child exited , status =0
6 $./ exec_status /bin/ sleep 60 &
7 [1] 4771
8 PID of child : 4773
9 $ kill 4773

10 Wait returned PID 4773
11 child killed by signal 15 (Terminated)
12 [1]+ Done ./ exec_status /bin/ sleep 60

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-47 §8.7

Exercise

1 Write a simple shell program. The program should loop, continuously
reading shell commands from standard input. Each input line consists
of a set of white-space delimited words that are a command and its
arguments. Each command should be executed in a new child process
(fork()) using execve(). The parent process (the “shell”) should wait
on each child and display its wait status (you can use the supplied
printWaitStatus() function).
[template: procexec/ex.simple_shell.c]

Some hints:

The space-delimited words in the input line need to be broken
down into a set of null-terminated strings pointed to by an
argv-style array, and that array must end with a NULL pointer.
The strtok(3) library function simplifies this task. (This task is
already performed by code in the template.)

Because execve() is used, you will need to specify each command
using a (relative or absolute) pathname.

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-48 §8.7

Exercise

2 Write a program, procexec/exec_self_pid.c, that verifies that an
exec does not change a process’s PID

The program should perform the following steps:

Print the process’s PID.

If argc is 2, the program exits.

Otherwise, the program uses execl() to re-execute itself
with an additional command-line argument (any string), so
that argc will be 2.

Test the program by running it with no command-line arguments
(i.e., argc is 1).

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-49 §8.7

Exercise

3 Write a program ([template: procexec/ex.make_link.c]) that
takes two arguments:

make_link target linkpath

If invoked with the name slink, it creates a symbolic link (symlink())
using these pathnames, otherwise it creates a hard link (link()). After
compiling, create two hard links to the executable, with the names
hlink and slink. Verify that when run with the name hlink, the program
creates hard links, while when run with the name slink, it creates
symbolic links.

Hint:

You will find the basename() and strcmp() functions useful when
inspecting the program name in argv[0].

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-50 §8.7

The exec() library functions

include <unistd .h>
int execle (const char *pathname , const char *arg , ...

/* , (char *) NULL , char *const envp [] */);
int execlp (const char *filename , const char *arg , ...

/* , (char *) NULL */);
int execvp (const char *filename , char * const argv []);
int execv(const char *pathname , char * const argv []);
int execl(const char *pathname , const char *arg , ...

/* , (char *) NULL */);
int execvpe (const char *filename , const *char argv [],

char * const envp []);

Variations on theme of execve()

Like execve(), the exec() functions return only if they fail

execvpe() is Linux-specific (define _GNU_SOURCE)

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-51 §8.7

The exec() library functions

Vary theme of execve() with 2 choices in each of 3 dimensions:

How are command-line arguments of new program specified?

How is the executable specified?

How is environment of new program specified?

Final letters in name of each function are clue about behavior

Function Specification of
arguments (v, l)

Specification of
executable file
(-, p)

Source of
environment
(e, -)

execve() array pathname envp argument
execle() list pathname envp argument
execlp() list filename + PATH caller’s environ
execvp() array filename + PATH caller’s environ
execv() array pathname caller’s environ
execl() list pathname caller’s environ
execvpe() array filename + PATH envp argument

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-52 §8.7

File descriptors and exec()

By default, file descriptors remain open across exec()

Allows caller of exec() to open files for use by new program

The shell employs this feature to do I/O redirection

E.g., for redirection in this command: prog > file

fd = open("file", O_CREAT | O_WRONLY | O_TRUNC ,
0666);

dup2(fd , STDOUT_FILENO);
close(fd);
execvp ("prog", ...);

[TLPI §27.4]

System Programming Fundamentals ©2020, Michael Kerrisk Process Lifecycle 8-53 §8.7

Notes

Notes

Notes

Linux/UNIX System Programming Fundamentals

System Call Tracing with
strace

Michael Kerrisk, man7.org © 2020

mtk@man7.org

NDC TechTown
August 2020

Outline

9 System Call Tracing with strace 9-1
9.1 Getting started 9-3
9.2 Tracing child processes 9-10
9.3 Filtering strace output 9-14
9.4 System call tampering 9-20
9.5 Further strace options 9-26

Outline

9 System Call Tracing with strace 9-1
9.1 Getting started 9-3
9.2 Tracing child processes 9-10
9.3 Filtering strace output 9-14
9.4 System call tampering 9-20
9.5 Further strace options 9-26

strace(1)

A tool to trace system calls made by a user-space process

Implemented via ptrace(2)

Or: a debugging tool for tracing complete conversation
between application and kernel

Application source code is not required

Answer questions like:

What system calls are employed by application?

Which files does application touch?

What arguments are being passed to each system call?

Which system calls are failing, and why (errno)?

There is also a loosely related ltrace(1) command

Trace library function calls in dynamic shared objects (e.g.,
libc)

We won’t cover this tool

System Programming Fundamentals ©2020, Michael Kerrisk System Call Tracing with strace 9-4 §9.1

strace(1)

Log information is provided in symbolic form

System call names are shown

We see signal names (not numbers)

Strings printed as characters (up to 32 bytes, by default)

Bit-mask arguments displayed symbolically, using
corresponding bit flag names ORed together

Structures displayed with labeled fields

errno values displayed symbolically + matching error text

“large” arguments and structures are abbreviated by default

fstat (3, { st_dev = makedev (8, 2), st_ino =401567 ,
st_mode = S_IFREG |0755 , st_nlink =1, st_uid =0, st_gid =0,
st_blksize =4096 , st_blocks =280 , st_size =142136 ,
st_atime =2015/02/17 -17:17:25 , st_mtime =2013/12/27 -22:19:58 ,
st_ctime =2014/04/07 -21:44:17 }) = 0

open("/ lib64 / liblzma .so .5", O_RDONLY | O_CLOEXEC) = 3

System Programming Fundamentals ©2020, Michael Kerrisk System Call Tracing with strace 9-5 §9.1

Simple usage: tracing a command at the command line

A very simple C program:

int main(int argc , char *argv []) {
define STR " Hello world \n"

write (STDOUT_FILENO , STR , strlen (STR));
exit(EXIT_SUCCESS);

}

Run strace(1), directing logging output (–o) to a file:

$ strace -o strace .log ./ hello_world
Hello world

(By default, trace output goes to standard error)

B On some systems, may first need to to ensure
ptrace_scope file has vaue 0 or 1:

echo 0 > /proc/sys/ kernel /yama/ ptrace_scope

Yama LSM disables ptrace(2) to prevent attack escalation;
see ptrace(2) man page

System Programming Fundamentals ©2020, Michael Kerrisk System Call Tracing with strace 9-6 §9.1

Simple usage: tracing a command at the command line

$ cat strace .log
execve ("./ hello_world ", ["./ hello_world "], [/* 110 vars */]) = 0
...
access ("/etc/ld.so. preload ", R_OK) = -1 ENOENT
(No such file or directory)
open("/etc/ld.so. cache ", O_RDONLY | O_CLOEXEC) = 3
fstat (3, { st_mode = S_IFREG |0644 , st_size =160311 , ...}) = 0
mmap(NULL , 160311 , PROT_READ , MAP_PRIVATE , 3, 0) = 0 x7fa5ecfc0000
close (3) = 0
open("/ lib64 /libc.so .6", O_RDONLY | O_CLOEXEC) = 3
...
write (1, " Hello world \n", 12) = 12
exit_group (0) = ?
+++ exited with 0 +++

Even simple programs make lots of system calls!

25 in this case (many have been edited from above output)

Most output in this trace relates to finding and loading
shared libraries

First call (execve()) was used by shell to load our program

Only last two system calls were made by our program

System Programming Fundamentals ©2020, Michael Kerrisk System Call Tracing with strace 9-7 §9.1

Simple usage: tracing a command at the command line

$ cat strace .log
execve ("./ hello_world ", ["./ hello_world "], [/* 110 vars */]) = 0
...
access ("/etc/ld.so. preload ", R_OK) = -1 ENOENT
(No such file or directory)
open("/etc/ld.so. cache ", O_RDONLY | O_CLOEXEC) = 3
fstat (3, { st_mode = S_IFREG |0644 , st_size =160311 , ...}) = 0
mmap(NULL , 160311 , PROT_READ , MAP_PRIVATE , 3, 0) = 0 x7fa5ecfc0000
close (3) = 0
open("/ lib64 /libc.so .6", O_RDONLY | O_CLOEXEC) = 3
...
write (1, " Hello world \n", 12) = 12
exit_group (0) = ?
+++ exited with 0 +++

For each system call, we see:

Name of system call

Values passed in/returned via arguments

System call return value

Symbolic errno value (+ explanatory text) on syscall failures

System Programming Fundamentals ©2020, Michael Kerrisk System Call Tracing with strace 9-8 §9.1

A gotcha...

The last call in our program was:

exit(EXIT_SUCCESS);

But strace showed us:

exit_group (0) = ?

Some detective work:
We “know” exit(3) is a library function that calls _exit(2)

But where did exit_group() come from?

_exit(2) man page tells us:

$ man 2 _exit
...
C library / kernel differences

In glibc up to version 2.3 , the _exit () wrapper function
invoked the kernel system call of the same name. Since
glibc 2.3 , the wrapper function invokes exit_group (2) ,
in order to terminate all of the threads in a process .

⇒ may need to dig deeper to understand strace(1) output

System Programming Fundamentals ©2020, Michael Kerrisk System Call Tracing with strace 9-9 §9.1

Outline

9 System Call Tracing with strace 9-1
9.1 Getting started 9-3
9.2 Tracing child processes 9-10
9.3 Filtering strace output 9-14
9.4 System call tampering 9-20
9.5 Further strace options 9-26

Tracing child processes

By default, strace does not trace children of traced process

–f option causes children to be traced

Each trace line is prefixed by PID

In a program that employs POSIX threads, each line shows
kernel thread ID (gettid())

System Programming Fundamentals ©2020, Michael Kerrisk System Call Tracing with strace 9-11 §9.2

Tracing child processes: strace/fork_exec.c

1 int main(int argc , char *argv []) {
2 pid_t childPid ;
3 char * newEnv [] = {"ONE =1", "TWO =2", NULL };
4
5 printf ("PID of parent : %ld\n", (long) getpid ());
6 childPid = fork ();
7 if (childPid == 0) { /* Child */
8 printf ("PID of child : %ld\n", (long) getpid ());
9 if (argc > 1) {

10 execve (argv [1] , &argv [1] , newEnv);
11 errExit (" execve ");
12 }
13 exit(EXIT_SUCCESS);
14 }
15 wait(NULL); /* Parent waits for child */
16 exit(EXIT_SUCCESS);
17 }

$ strace -f -o strace .log ./ fork_exec
PID of parent : 1939
PID of child: 1940

System Programming Fundamentals ©2020, Michael Kerrisk System Call Tracing with strace 9-12 §9.2

Tracing child processes: strace/fork_exec.c

$ cat strace .log
1939 execve ("./ fork_exec ", ["./ fork_exec "], [/* 110 vars */]) = 0
...
1939 clone (child_stack =0, flags = CLONE_CHILD_CLEARTID |

CLONE_CHILD_SETTID |SIGCHLD , child_tidptr =0 x7fe484b2ea10) = 1940
1939 wait4 (-1, <unfinished ... >
1940 write (1, "PID of child : 1940\ n", 21) = 21
1940 exit_group (0) = ?
1940 +++ exited with 0 +++
1939 <... wait4 resumed > NULL , 0, NULL) = 1940
1939 --- SIGCHLD { si_signo =SIGCHLD , si_code = CLD_EXITED ,

si_pid =1940 , si_uid =1000 , si_status =0, si_utime =0,
si_stime =0} ---

1939 exit_group (0) = ?
1939 +++ exited with 0 +++

Each line of trace output is prefixed with corresponding PID

Inside glibc, fork() is actually a wrapper that calls clone(2)

wait() is a wrapper that calls wait4(2)

We see two lines of output for wait4() because call blocks
and then resumes

strace shows us that parent received a SIGCHLD signal
System Programming Fundamentals ©2020, Michael Kerrisk System Call Tracing with strace 9-13 §9.2

Outline

9 System Call Tracing with strace 9-1
9.1 Getting started 9-3
9.2 Tracing child processes 9-10
9.3 Filtering strace output 9-14
9.4 System call tampering 9-20
9.5 Further strace options 9-26

Selecting system calls to be traced

strace –e can be used to select system calls to be traced

–e trace=<syscall>[,<syscall>...]

Specify system call(s) that should be traced

Other system calls are ignored

$ strace -o strace .log -e trace=open ,close ls

–e trace=!<syscall>[,<syscall>...]
Exclude specified system call(s) from tracing

Some applications do bizarre things (e.g., calling
gettimeofday() 1000s of times/sec.)

B “!” needs to be quoted to avoid shell interpretation

–e trace=/<regexp>
Trace syscalls whose names match regular expression

April 2017; expression will probably need to be quoted...

System Programming Fundamentals ©2020, Michael Kerrisk System Call Tracing with strace 9-15 §9.3

Selecting system calls by category

–e trace=<syscall-category> trace a category of syscalls

Categories include:
%file : trace all syscalls that take a filename as argument

open(), stat(), truncate(), chmod(), setxattr(), link()...

%desc : trace file-descriptor-related syscalls

read(), write(), open(), close(), fsetxattr(), poll(), select(),
pipe(), fcntl(), epoll_create(), epoll_wait()...

%process : trace process management syscalls

fork(), clone(), exit_group(), execve(), wait4(), unshare()...

%network : trace network-related syscalls

socket(), bind(), listen(), connect(), sendmsg()...

%signal : trace signal-related syscalls

kill(), rt_sigaction(), rt_sigprocmask(), rt_sigqueueinfo()...

%memory : trace memory-mapping-related syscalls

mmap(), mprotect(), mlock()...

System Programming Fundamentals ©2020, Michael Kerrisk System Call Tracing with strace 9-16 §9.3

Filtering signals

strace –e signal=set

Trace only specified set of signals

“sig” prefix in names is optional; following are equivalent:

$ strace -o strace .log -e signal = sigio ,sig int ls > /dev/null
$ strace -o strace .log -e signal =io , int ls > /dev/null

strace –e signal=!set

Exclude specified signals from tracing

System Programming Fundamentals ©2020, Michael Kerrisk System Call Tracing with strace 9-17 §9.3

Filtering by pathname

strace –P pathname : trace only system calls that access file
at pathname

Specify multiple –P options to trace multiple paths

Example:

$ strace -o strace .log -P / lib64 /libc.so .6 ls > /dev/null
Requested path ’/ lib64 /libc.so .6 ’ resolved into

’/usr/ lib64 /libc -2.18. so ’
$ cat strace .log
open("/ lib64 /libc.so .6", O_RDONLY | O_CLOEXEC) = 3
read(3, "\177 ELF \2\1\1\3\0\0\0\0\0\0\0\0\3\0 >\0\1\0\0\0 p\36

\2\0\0\0\0\0 "... , 832) = 832
fstat (3, { st_mode = S_IFREG |0755 , st_size =2093096 , ...}) = 0
mmap(NULL , 3920480 , PROT_READ | PROT_EXEC ,

MAP_PRIVATE | MAP_DENYWRITE , 3, 0) = 0 x7f8511fa3000
mmap (0 x7f8512356000 , 24576 , PROT_READ | PROT_WRITE ,

MAP_PRIVATE | MAP_FIXED | MAP_DENYWRITE , 3, 0 x1b3000)
= 0 x7f8512356000

close (3) = 0
+++ exited with 0 +++

strace noticed that the specified file was opened on FD 3,
and also traced operations on that FD

System Programming Fundamentals ©2020, Michael Kerrisk System Call Tracing with strace 9-18 §9.3

Mapping file descriptors to pathnames

–y option causes strace to display pathnames corresponding
to each file descriptor

Useful info is also displayed for other types of file
descriptors, such as pipes and sockets

$ strace -y cat greet
...
openat (AT_FDCWD , " greet ", O_RDONLY) = 3</ home/mtk/greet >
fstat (3</ home/mtk/greet >, { st_mode = S_IFREG |0644 , ...
read(3</ home/mtk/greet >, " hello world \n", 131072) = 12
write (1</ dev/pts /11 >, " hello world \n", 12) = 12
read(3</ home/mtk/greet >, "", 131072) = 0
close (3</ home/mtk/greet >) = 0
...

–yy is as for –y but shows additional protocol-specific info
for sockets

write (3<TCP :[10.0.20.135:33522 - >213.131.240.174:80] > ,
"GET / HTTP /1.1\ r\nUser - Agent : Wget"... , 135) = 135
read(3<TCP :[10.0.20.135:33522 - >213.131.240.174:80] > ,
"HTTP /1.1 200 OK\r\ nDate : Thu , 19 J"... , 253) = 253

System Programming Fundamentals ©2020, Michael Kerrisk System Call Tracing with strace 9-19 §9.3

Outline

9 System Call Tracing with strace 9-1
9.1 Getting started 9-3
9.2 Tracing child processes 9-10
9.3 Filtering strace output 9-14
9.4 System call tampering 9-20
9.5 Further strace options 9-26

System call tampering

strace can be used to modify behavior of selected syscall(s)

Initial feature implementation completed in early 2017

Various possible effects:

Inject delay before/after syscall

Generate a signal on syscall

Bypass execution of syscall, making it return a “success”
value or fail with specified value in errno (error injection)

(Limited) ability to choose which invocation of syscall will
be modified

System Programming Fundamentals ©2020, Michael Kerrisk System Call Tracing with strace 9-21 §9.4

strace -e inject options

Syntax: strace -e inject=<syscall-set>[:<option>]...

syscall-set is set of syscalls whose behavior will be modified

:error=errnum : syscall is not executed; returns failure
status with errno set as specified

:retval=value : syscall is not executed; returns specified
“success” value

Can’t specify both :retval and :errno together

System Programming Fundamentals ©2020, Michael Kerrisk System Call Tracing with strace 9-22 §9.4

strace -e inject options

:signal=sig : deliver specified signal on entry to syscall

:delay_enter=usecs , :delay_exit=usecs : delay for usecs
microseconds on entry to/return from syscall

:when=expr : specify which invocation(s) to tamper with

:when=N : tamper with invocation N

:when=N+ : tamper starting at Nth invocation

:when=N+S : tamper with invocation N, and then every S
invocations

Range of N and S is 1..65535

System Programming Fundamentals ©2020, Michael Kerrisk System Call Tracing with strace 9-23 §9.4

Example

$ strace -y -e close \
-e inject = close : error =22: when =3 /bin/ls > d

close (3 </ etc/ld.so.cache >) = 0
close (3 </ usr/ lib64 / libselinux .so .1 >) = 0
close (3 </ usr/ lib64 / libcap .so .2.25 >) = -1 EINVAL
(Invalid argument) (INJECTED)
close (3 </ usr/ lib64 / libcap .so .2.25 >) = 0
/bin/ls: error while loading shared libraries : libcap .so .2:
cannot close file descriptor : Invalid argument
+++ exited with 127 +++

Use –y to show pathnames corresponding to file descriptors

Inject error 22 (EINVAL) on third call to close()

Third close() was not executed; an error return was injected

(After that, ls got sad)

System Programming Fundamentals ©2020, Michael Kerrisk System Call Tracing with strace 9-24 §9.4

Using system call tampering for error injection

Success-injection example: make unlinkat() succeed, without
deleting temporary file that would have been deleted

Error-injection use case: quick and simple black-box testing

Does application fail gracefully when encountering
unexpected error?

But there are alternatives for black-box testing:
Preloaded library with interposing wrapper function that
spoofs a failure (without calling “real” function)

Can be more flexible

But can’t be used with set-UID/set-GID programs

Seccomp (secure computing)

Generalized facility to block execution of system calls based
on system call number and argument values

More powerful, but can’t, for example cause Nth call to fail

System Programming Fundamentals ©2020, Michael Kerrisk System Call Tracing with strace 9-25 §9.4

Outline

9 System Call Tracing with strace 9-1
9.1 Getting started 9-3
9.2 Tracing child processes 9-10
9.3 Filtering strace output 9-14
9.4 System call tampering 9-20
9.5 Further strace options 9-26

Obtaining a system call summary

strace –c counts time, calls, and errors for each system call
and reports a summary on program exit

$ strace -c who > /dev/null
% time seconds usecs /call calls errors syscall
------ ----------- ----------- --------- --------- --------------

21.77 0.000648 9 72 alarm
14.42 0.000429 9 48 rt_sigaction
13.34 0.000397 8 48 fcntl

8.84 0.000263 5 48 read
7.29 0.000217 13 17 2 kill
6.79 0.000202 6 33 1 stat
5.41 0.000161 5 31 mmap
4.44 0.000132 4 31 6 open
2.89 0.000086 3 29 close
2.86 0.000085 43 2 socket
2.82 0.000084 42 2 2 connect

...
------ ----------- ----------- --------- --------- --------------
100.00 0.002976 442 13 total

Treat time measurements as indicative only, since strace
adds overhead to each syscall

System Programming Fundamentals ©2020, Michael Kerrisk System Call Tracing with strace 9-27 §9.5

Tracing live processes

–p PID : trace running process with specified PID

Type Control-C to cease tracing

To trace multiple processes, specify –p multiple times

Can trace only processes you own

B B tracing a process can heavily affect performance

E.g., up to two orders of magnitude slow-down in syscalls

B Think twice before using in a production environment

–p PID –f : will trace all threads in specified process

System Programming Fundamentals ©2020, Michael Kerrisk System Call Tracing with strace 9-28 §9.5

Further strace options

–k : print a stack trace after each traced syscall

sudo strace –u <username> prog : run program with UID
and GIDs of specified user

Useful when tracing privileged programs, such as
set-UID-root programs

Normally, privileged programs are not run with privilege
when executed under strace

System Programming Fundamentals ©2020, Michael Kerrisk System Call Tracing with strace 9-29 §9.5

Further strace options

–v : don’t abbreviate arguments (structures, etc.)

Output can be quite verbose...

–s strsize : maximum number of bytes to display for strings

Default is 32 characters

Pathnames are always printed in full

Various options show start time or duration of system calls
–t, –tt : prefix each trace line with wall-clock time

–tt also adds microseconds

–T : show time spent in syscall

But treat as indications only, since strace causes overhead
on syscalls

System Programming Fundamentals ©2020, Michael Kerrisk System Call Tracing with strace 9-30 §9.5

Notes

Notes

Linux/UNIX System Programming Fundamentals

Pipes and FIFOs

Michael Kerrisk, man7.org © 2020

mtk@man7.org

NDC TechTown
August 2020

Outline

10 Pipes and FIFOs 10-1
10.1 Overview 10-3
10.2 Creating and using pipes 10-8
10.3 Connecting filters with pipes 10-20
10.4 FIFOs 10-33

Outline

10 Pipes and FIFOs 10-1
10.1 Overview 10-3
10.2 Creating and using pipes 10-8
10.3 Connecting filters with pipes 10-20
10.4 FIFOs 10-33

Pipes and FIFOs

Mechanisms for exchanging data between processes (IPC)

pipe(7) man page

Have generally similar I/O semantics

Principal difference is accessibility model

Pipes: “related” processes

FIFOs (named pipes):

Have a name in the filesystem

Accessibility: user/group ownership + file permissions

For both mechanisms, data has process persistence

When all processes close FDs referring to pipe/FIFO,
unread data is discarded

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-4 §10.1

Pipes

Pipes are a commonly used shell feature; e.g.:

$ ls | wc -l

To execute this command, the shell:

Uses fork() to create two processes executing ls and wc

Connects standard output of ls and standard input of wc

to pipe

Data in pipe is held in kernel memory

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-5 §10.1

Characteristics of pipes

Pipes are byte streams

Data is an undelimited sequence of bytes

Can read arbitrary blocks of data, regardless of size of
writes

Data passes through pipe sequentially (no random access)

Pipes are unidirectional

Pipes have a read end and a write end

[TLPI §44.1]

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-6 §10.1

Characteristics of pipes

Pipes have a limited capacity

Limit varies across systems

Pipe capacity on Linux:

Linux <= 2.6.10: 4096 bytes

Linux >= 2.6.11: 65,536 bytes

fcntl(fd, F_SETPIPE_SZ, size) can be used to change pipe
capacity (since Linux 2.6.35)

Applications should be designed not to care about capacity

To prevent writer from blocking, ensure that there is always
an active reader

[TLPI §44.1]

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-7 §10.1

Outline

10 Pipes and FIFOs 10-1
10.1 Overview 10-3
10.2 Creating and using pipes 10-8
10.3 Connecting filters with pipes 10-20
10.4 FIFOs 10-33

Creating a pipe

include <unistd .h>
int pipe(int filedes [2]);

Creates a new pipe

Returns two file descriptors in filedes :
filedes[0] refers to read end of pipe

filedes[1] refers to write end of pipe

Uses lowest free file descriptors

[TLPI §44.2]

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-9 §10.2

I/O on pipes

I/O performed as usual, using read() and write()

Calls return number of bytes transferred

Reads:

Return min(# of bytes requested, # of bytes available)

Block until at least one byte of data is available

Return end-of-file (0) if write end has been closed

(after all outstanding data in pipe has been read)

[TLPI §44.10]

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-10 §10.2

I/O on pipes

Writing to a pipe:

Insufficient space in pipe? ⇒ write() will block
Blocked write may be interrupted by a signal handler

No bytes yet written? ⇒ –1 return + EINTR error

Some data written? ⇒ partial write

If pipe has no reader, a writer is informed:
write() causes generation of SIGPIPE signal

Default action: terminate process

Can make disposition “ignore”, in which case...

write() fails with EPIPE error

[TLPI §44.10]

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-11 §10.2

Pipe writes and PIPE_BUF

Writing to a pipe:

Writes ≤ PIPE_BUF bytes are guaranteed to be atomic
If there is not enough space to write all bytes, none are
written

Caller blocks until there is space to write all bytes in one
operation

Bytes won’t be intermingled with writes by other processes

PIPE_BUF == 4096 on Linux; as low as 512 on some
systems

Writes > PIPE_BUF bytes may not be atomic
Data may be broken into/transferred in smaller pieces

Possibly less than PIPE_BUF bytes (e.g., even single bytes,
if that is all there is room for)

Pieces may be intermingled if there are multiple writers

write() completes when all data has been transferred

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-12 §10.2

Connecting processes using pipes

After creation, only one process knows about pipe
Limited uses...

To connect two processes to pipe, use fork()

Child inherits copies of parent’s file descriptors
File descriptors refer to same pipe

[TLPI §44.2]

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-13 §10.2

Closing unused descriptors

Parent and child can now both read and write on pipe

Usually undesirable to have both parent and child each
reading and writing on pipe

Multiple readers would race for data

Multiple writers would have data intermingled

Instead, data normally flows in one direction

⇒ after fork(), each process closes unused file descriptors

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-14 §10.2

Closing unused descriptors

Suppose we want to transfer data from parent to child...

Parent does not need read descriptor and child does not
need write descriptor

Question: why is it important to close the unused FDs?

[TLPI §44.2]

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-15 §10.2

Closing unused file descriptors

Suppose we want to transfer data from parent to child:

1 int pfd [2];
2
3 pipe(pfd); /* Create the pipe */
4
5 switch (fork ()) {
6 case -1: errExit ("fork");
7 case 0: /* Child */
8 close (pfd [1]);
9

10 /* Child now reads from pipe */
11 break;
12
13 default : /* Parent */
14 close (pfd [0]);
15
16 /* Parent now writes to pipe */
17 break;
18 }

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-16 §10.2

Closing unused file descriptors is essential

Closing unused descriptors is essential for correct use of pipes

Reader sees EOF only when all write descriptors are closed

Instead, read() will block, waiting for data

Writer gets EPIPE + SIGPIPE only if all read descriptors
are closed

Instead, write() will succeed, or block if pipe is full

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-17 §10.2

Example: pipes/simple_pipe.c

Parent sends argv[1] string to child, via pipe

1 int pfd [2];
2
3 pipe(pfd); /* Create the pipe */
4
5 switch (fork ()) {
6 case 0: /* Child - reads from pipe */
7 close (pfd [1]);
8 for (;;) { /* Read data from pipe , echo on stdout */
9 numRead = read(pfd [0] , buf , BUF_SIZE);

10 if (numRead == 0)
11 break ; /* End -of - file */
12 write (STDOUT_FILENO , buf , numRead);
13 }
14 write (STDOUT_FILENO , "\n", 1);
15 close (pfd [0]);
16 _exit (EXIT_SUCCESS);
17
18 default : /* Parent - writes to pipe */
19 close (pfd [0]);
20 write (pfd [1] , argv [1] , strlen (argv [1]));
21 close (pfd [1]) ; /* Child will see EOF */
22 wait(NULL); /* Wait for child to finish */
23 exit(EXIT_SUCCESS);
24 }

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-18 §10.2

Exercise

1 Write a program ([template: pipes/ex.pipe_ucase.c])
that:

Creates a pipe

Creates a child process

The parent reads input from standard input (until
end-of-file) and writes it to the pipe

The child reads from the pipe (until end-of-file), upper
cases (toupper(3)) any letters that it reads, and writes the
resulting text to standard output

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-19 §10.2

Outline

10 Pipes and FIFOs 10-1
10.1 Overview 10-3
10.2 Creating and using pipes 10-8
10.3 Connecting filters with pipes 10-20
10.4 FIFOs 10-33

Connecting a filter to a pipe: the problem

Filter == program that reads from stdin and/or writes to
stdout

Suppose we want filter to read from or write to a pipe...

What’s the problem?

Normally, file descriptors 0, 1, and 2 are already in use

⇒ pipe() will use 2 other descriptors

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-21 §10.3

Connecting a filter to a pipe: the solution

Solution is to use dup() (or similar)

e.g., to connect filter to write end of pipe:

int pfd [2];
pipe(pfd); /* Allocates (say) FDs 3 and 4 */

/* ... Other steps here , e.g., fork () ... */
close(STDOUT_FILENO); /* Free FD 1 */
dup(pfd [1]); /* Uses lowest free FD (FD1) */

And since we no longer need pfd[1], we should close it:

close(pfd [1]);

(Recall that unused descriptors must be closed...)

But, what if descriptor 0 got closed between pipe() and
(first) close()...?

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-22 §10.3

Connecting a filter to a pipe: refining the solution

dup2(oldfd, newfd) solves the problem:

Closes newfd if it was open

Makes newfd a duplicate of oldfd

(Preceding two steps are atomic; prevents FD races in
multithreaded applications)

Does nothing if oldfd == newfd

⇒ Replace calls to close() and dup() with dup2() :

dup2(pfd [1], STDOUT_FILENO);
/* Close FD 1, and reopen FD 1 bound

to write end of pipe */

close(pfd [1]); /* FD no longer needed */

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-23 §10.3

Connecting a filter to a pipe: refining the solution

But, what if descriptors 0 and 1 were closed before pipe() :

pipe(pfd); /* Uses FD 0 and FD 1 */

/* Let ’s presume write end of pipe used FD 1... */

dup2(pfd [1], STDOUT_FILENO); /* dup2 (1 ,1) [no -op] */
close(pfd [1]); /* close (1) [!!] */

B dup2() did nothing, and close() closed our only descriptor

Solution: dup2() + close() not needed if pipe() used the
descriptor we want:

pipe(pfd);

if (pfd [1] != STDOUT_FILENO) {
dup2(pfd [1], STDOUT_FILENO);
close(pfd [1]);

}

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-24 §10.3

Example: pipes/pipe_ls_wc_simple.c

Implement ls | wc -l (error checking omitted)

1 int pfd [2];
2 pipe(pfd);
3
4 switch (fork ()) {
5 case 0: /* Child : exec ’ls ’ to write to pipe */
6 close (pfd [0]); /* Read end is unused */
7
8 /* Duplicate stdout on write end of pipe */
9 if (pfd [1] != STDOUT_FILENO) {

10 dup2(pfd [1] , STDOUT_FILENO);
11 close (pfd [1]);
12 }
13 execlp ("ls", "ls", (char *) NULL);
14 errExit (" execlp ls");
15
16 default : /* Parent : exec ’wc -l’ to read from pipe */
17 close (pfd [1]); /* Write end is unused */
18
19 /* Duplicate stdin on read end of pipe */
20 if (pfd [0] != STDIN_FILENO) {
21 dup2(pfd [0] , STDIN_FILENO);
22 close (pfd [0]);
23 }
24 execlp ("wc", "wc", "-l", (char *) NULL);
25 errExit (" execlp wc");
26 }

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-25 §10.3

Example: pipe/pipe_ls_wc_simple.c

Implement ls | wc -l (error checking omitted)

1 $./ pipe_ls_wc_simple
2 61
3 $ ls | wc -l
4 61

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-26 §10.3

Exercises

1 Create a program, ([template: pipes/ex.unique_tokens.c]), that
takes one filename argument and uses fork(), exec(), dup2(), and
pipe() to implement the following pipeline:

tr ’ \t’ ’\012 ’ < filename | sort -u

The tr command converts spaces and tabs into newlines. (Input
redirection is needed because tr doesn’t take filename arguments.)

The program pipes/pipe_ls_wc_simple.c provides a useful
example for the solution of this problem.

If you want to write debugging output, write it to standard error.

To make tr read from filename, simply open() the file and
duplicate (dup2()) the resulting FD onto STDIN_FILENO.

The Makefile provides a test: make test_unique_tokens

2 Extend the previous program to create a new program,
pipes/ex.count_unique_tokens.c, that takes one filename
argument and implements the following pipeline:

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-27 §10.3

Exercises

tr ’ \t’ ’\012 ’ < filename | sort -u | wc -w

file tr

child 1

pipe 1 sort

child 2

pipe 2 wc

parent

stdin stdout stdin stdout stdin

You can use tokens.txt as a test file. It contains 20 unique tokens.
The Makefile provides a test: make test_count_unique_tokens

3 Generalize the program created in the previous exercise to create a new
version ([template: pipes/ex.pipeline_builder.c]) that
implements and uses the following function:

int execlPipeline (int infd , bool makePipe , char *arg , ...)

This function creates a child process whose standard output is
connected to the write end of a pipe created by the function. The child
process executes the command specified in the variable-length list of
arguments contained in arg and subsequent arguments.
[Exercise continues on next slide]

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-28 §10.3

Exercises

Among other things, execlPipeline() should do the following:

Before calling fork(), create a pipeline, if makePipe is nonzero.

In the child:

Duplicate the file descriptor infd to be standard input, so
that the child will read from that file descriptor.

(If makePipe is nonzero) duplicate the write end of the pipe
so that it becomes the standard output of the command
executed by the child.

As its function result, execlPipeline() returns the file descriptor for the
read end of the pipe that it creates, or –1 if it did not create a pipe.
Before returning, execlPipeline() closes infd. Using this function, the
pipeline could be built using the following code:

fd = open(argv [1] , O_RDONLY);
fd = execlPipeline (fd , true , "tr", " \t", " \\012 ",

(char *) NULL);
fd = execlPipeline (fd , true , "sort", "-u", (char *) NULL);
(void) execlPipeline (fd , false , "wc", "-l", (char *) NULL);

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-29 §10.3

Exercises

Hints:

(In the child), you will need to make use of the stdarg(3) APIs, in
order to parse the variable-length argument list. You may find it
useful to examine the procexec/execlp.c source file for an
example of how to build an argv-style vector from a
variable-length argument list.

Don’t forget to close superfluous pipe file descriptors.

4 Write a program with the following command-line arguments:

$./ pipe_speed num - blocks wblock -size rblock -size

The program does the following:

Creates a pipe.

Calls fork() to create a child process

The child reads blocks of data of size rblock-size from the pipe,
until end-of-file.
[Exercise continues on next slide]

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-30 §10.3

Exercises

The parent:

Writes num-blocks blocks of size wblock-size to the pipe.

Closes the pipe.

Waits for the child to terminate.

Time the operation of the program for various values of num-blocks
and wblock-size.

5 The Linux-specific fcntl(fd, F_SETPIPE_SZ, size) operation sets the
capacity of a pipe to at least size bytes, and returns the new capacity.
(In the current kernel implementation, the kernel rounds size up to the
next power-of-two multiple of the page size.)

Modify the preceding program to allow an optional fourth
command-line argument (an integer) that should be used in a
F_SETPIPE_SZ operation on the pipe. Does making the pipe capacity
smaller (say, 4096 bytes) affect the rate of data transfer?

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-31 §10.3

Exercises

6 Read the sched_setaffinity(2) man page. Modify the program so that
you can choose which CPUs the parent and child run on. Try different
combinations of CPUs with “small” block sizes (≤ 1024, say). Do you
see any differences in the data transfer rates? If yes, what might be the
reason?

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-32 §10.3

Outline

10 Pipes and FIFOs 10-1
10.1 Overview 10-3
10.2 Creating and using pipes 10-8
10.3 Connecting filters with pipes 10-20
10.4 FIFOs 10-33

FIFOs

“First-In First Out”

Semantically similar to pipes

Main difference: FIFO has a name in filesystem
⇒ sometimes called “named pipes”

Any process with permission to open FIFO can perform I/O

To create in shell: mkfifo [-m permissions] pathname

$ mkfifo -m u+rw ,g=,o= myfifo
$ ls -lF myfifo
prw -------. 1 mtk mtk 0 Oct 31 13:21 myfifo |

To create from a program:

include <sys/stat.h>
int mkfifo (const char *pathname , mode_t mode);

When no longer needed, remove with unlink() or remove()

[TLPI §44.7]

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-34 §10.4

Opening a FIFO

Use open() :

fd = open(" myfifo ", O_RDONLY); /* Open read end */
fd = open(" myfifo ", O_WRONLY); /* Open write end */

Opening one end of a FIFO blocks until another
processes opens the other end

If other end is open, open() succeeds immediately

Opens are synchronized

Rationale: FIFO is useful only if there is a reader and a
writer

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-35 §10.4

I/O on FIFOs

Exactly as for pipes (read(), write())

Note: FIFO data is a buffer in the kernel

FIFO has filesystem pathname, but that is just a mechanism
that allows multiple processes to access same buffer

If all FDs are closed, unread data is discarded

(FIFO name persists in filesystem, but data has process
persistence)

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-36 §10.4

Exercise

1 Try the following with your favorite text file in a shell
session:

$ mkfifo myfifo
$ tr ’aeiou ’ ’aieuo ’ < myfifo &
$ man 2 pipe > myfifo

System Programming Fundamentals ©2020, Michael Kerrisk Pipes and FIFOs 10-37 §10.4

Notes

Notes

Notes

Linux/UNIX System Programming Fundamentals

Alternative I/O Models

Michael Kerrisk, man7.org © 2020

mtk@man7.org

NDC TechTown
August 2020

Outline

11 Alternative I/O Models 11-1
11.1 Overview 11-3
11.2 Nonblocking I/O 11-5
11.3 Signal-driven I/O 11-11
11.4 I/O multiplexing: poll() 11-14
11.5 Problems with poll() and select() 11-30
11.6 The epoll API 11-33
11.7 epoll events 11-43
11.8 epoll: edge-triggered notification 11-57
11.9 epoll: API quirks 11-68
11.10 Event-loop programming 11-73

Outline

11 Alternative I/O Models 11-1
11.1 Overview 11-3
11.2 Nonblocking I/O 11-5
11.3 Signal-driven I/O 11-11
11.4 I/O multiplexing: poll() 11-14
11.5 Problems with poll() and select() 11-30
11.6 The epoll API 11-33
11.7 epoll events 11-43
11.8 epoll: edge-triggered notification 11-57
11.9 epoll: API quirks 11-68
11.10 Event-loop programming 11-73

The traditional file I/O model

I/O on one file at a time

read(), write(), etc. operate on single descriptor

Blocking I/O

I/O not possible ⇒ call blocks until I/O becomes possible

Examples:

write() to pipe blocks if insufficient space

read() from socket that has no data available

But sometimes, we want to:

Check if I/O is possible without blocking if it is not

Monitor multiple file descriptors to see if I/O is possible
on any of them

[TLPI §63.1]

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-4 §11.1

Outline

11 Alternative I/O Models 11-1
11.1 Overview 11-3
11.2 Nonblocking I/O 11-5
11.3 Signal-driven I/O 11-11
11.4 I/O multiplexing: poll() 11-14
11.5 Problems with poll() and select() 11-30
11.6 The epoll API 11-33
11.7 epoll events 11-43
11.8 epoll: edge-triggered notification 11-57
11.9 epoll: API quirks 11-68
11.10 Event-loop programming 11-73

Nonblocking I/O

Nonblocking I/O ⇒ return error instead of blocking

EAGAIN error for read(), write(), and similar

Enabled via O_NONBLOCK file status flag

Set during open() ; can also be enabled via fcntl() :

flags = fcntl(fd , F_GETFL);
flags |= O_NONBLOCK ;
fcntl(fd , F_SETFL , flags);

Recall: file status flags reside in open file description

Many APIs that create FDs also have a flag that allows
nonblocking mode to be set at time FD is created

E.g., eventfd(), inotify_init1(), open(), pipe2(), signalfd(),
socket(), timerfd_create()

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-6 §11.2

EAGAIN vs EWOULDBLOCK

On BSD, EWOULDBLOCK was/is returned instead of EAGAIN

Many modern systems address this portability issue by
making EAGAIN and EWOULDBLOCK synonyms

POSIX explicitly permits this

Linux does this

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-7 §11.2

Use cases for nonblocking I/O

Check if I/O is possible without blocking if not (“polling”)

Mark file descriptor nonblocking

Perform I/O system call

If I/O call fails, try again later

Perform as much I/O as possible, without blocking on
completion

Mark file descriptor nonblocking

Perform I/O in a loop until EAGAIN encountered

Nonblocking accept()

Make listening socket nonblocking

⇒ accept() returns with EAGAIN/EWOULDBLOCK if no
pending connection

We’ll see some other valid use cases for nonblocking I/O

E.g., I/O while employing edge-triggered epoll notification

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-8 §11.2

Problems with nonblocking I/O

Using nonblocking I/O for repeatedly polling multiple file
descriptors is problematic

Frequent polling ⇒ CPU cycles wasted

Infrequent polling ⇒ high I/O latency

We need better techniques...

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-9 §11.2

Better techniques for managing multiple file descriptors

poll(), select() (“I/O multiplexing”):

Simultaneously monitor multiple FDs to see if I/O is
possible on any of them

Signal-driven I/O:

Kernel sends process a signal when I/O is possible on FD

Better performance than select() / poll()

epoll :

Monitor multiple FDs (like select() / poll())

Better performance and more features than select() / poll()

Simpler to program than signal-driven I/O

Linux-specific (since kernel 2.6.0)

Above techniques only monitor FDs to see if I/O is possible

Actual I/O is performed using traditional system calls

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-10 §11.2

Outline

11 Alternative I/O Models 11-1
11.1 Overview 11-3
11.2 Nonblocking I/O 11-5
11.3 Signal-driven I/O 11-11
11.4 I/O multiplexing: poll() 11-14
11.5 Problems with poll() and select() 11-30
11.6 The epoll API 11-33
11.7 epoll events 11-43
11.8 epoll: edge-triggered notification 11-57
11.9 epoll: API quirks 11-68
11.10 Event-loop programming 11-73

Signal-driven I/O

Somewhat portable technique for monitoring multiple FDs

Process performs following steps:
Establish signal handler (default notification signal is
SIGIO)

Mark itself as “owner” of FD (process that is to receive
signals)

fcntl(fd, F_SETOWN, pid) operation

Enable signaling when I/O is possible on FD
Set O_ASYNC flag using fcntl(fd, F_SETFL, flags)

Carry on to do other tasks

When I/O becomes possible, signal handler is invoked

Can enable I/O signaling on multiple FDs

Better performance than poll()/select()
(For same reasons as epoll, as explained later)

[TLPI §63.3]

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-12 §11.3

Signal-driven I/O

Fully exploiting signal-driven I/O requires use of
Linux-specific features

Choosing (realtime) signal via fcntl(fd, F_SETSIG, sig)

Default signal (SIGIO) is a nonqueuing traditional signal

Use SA_SIGINFO handler

⇒ obtain file descriptor via si_fd field of siginfo_t structure

epoll API is more feature-rich for task of monitoring
multiple FDs

⇒ We’ll ignore signal-driven I/O

(See TLPI §63.3 for more info + example program)

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-13 §11.3

Outline

11 Alternative I/O Models 11-1
11.1 Overview 11-3
11.2 Nonblocking I/O 11-5
11.3 Signal-driven I/O 11-11
11.4 I/O multiplexing: poll() 11-14
11.5 Problems with poll() and select() 11-30
11.6 The epoll API 11-33
11.7 epoll events 11-43
11.8 epoll: edge-triggered notification 11-57
11.9 epoll: API quirks 11-68
11.10 Event-loop programming 11-73

I/O multiplexing

Monitor multiple file descriptors to see if I/O is possible on
any of them

Terminology: the FD is “ready” for I/O
Often, we’ll talk of monitoring I/O events, but...

Strictly speaking, these APIs tell us whether an I/O
system call would block

Two traditional techniques:
select() (4.2BSD, 1983)

poll() (System V Release 3, 1986)

Both specified in POSIX and widely available

Can be applied to any file type
Pipes, FIFOs, terminals, devices, sockets...

Applicable to regular files, but not very useful

[TLPI §63.2]

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-15 §11.4

poll() and select()

select() and poll() perform same task

Differ primarily in how FDs are specified:
select() :

Arguments: 3 FD sets for 3 classes of readiness

Each FD set contains a set of FDs

poll() :

Argument: list (array) of file descriptors

Each array element specifies type of readiness to test

[TLPI §63.2.2]

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-16 §11.4

Arguments of poll() and select()

poll() pollfds[]

fd events re vents

0 POLLIN

1 POLLOUT

88 POLLIN

input

value

output

value

select()

0 1 2 ... 88 1023FD#:

x ... x ...readfds

xwritefds

... ...exceptfds

in/out

arguments

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-17 §11.4

poll() vs select()

poll() fixes some of the API problems of select()
select() uses fixed-size FD sets

Only FDs < 1024 can be monitored

Limitation of glibc, not kernel

select() uses same arguments for input and output

(Must reinitialize on each call inside a loop)

⇒ We’ll focus on poll()

[TLPI §63.2.2]

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-18 §11.4

poll()

include <poll.h>
int poll(struct pollfd fds [], nfds_t nfds , int timeout);

fds : list of file descriptors to be monitored

nfds : number of elements in fds

timeout : timeout if call blocks because no FD is yet ready
for I/O

[TLPI §63.2.2]

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-19 §11.4

The pollfd array

struct pollfd {
int fd; /* File descriptor */
short events ; /* Requested events bit mask */
short revents ; /* Returned events bit mask */

};

fds argument to poll() is list of file descriptors to monitor

For each list element:
events : bit mask of events to monitor for fd

Input value, initialized by caller

revents : returned bit mask of events that occurred for fd

Output value, set by kernel

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-20 §11.4

poll() events bits

Bit Input in
events?

Output in
revents?

Description

POLLIN • • Normal-priority data can be read

POLLPRI • •
High-priority data/exceptional
condition

POLLRDHUP • • Shutdown on peer socket
POLLOUT • • Data can be written
POLLERR • An error has occurred
POLLHUP • A hangup occurred
POLLNVAL • File descriptor is not open

Following bits can be specified in events ; they will be returned in

revents only if specified in events :

POLLIN, POLLPRI, and POLLRDHUP indicate input events

POLLOUT indicates an output event

POLLERR, POLLHUP, and POLLNVAL are returned in revents to provide

additional info about FD

Ignored if specified in events

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-21 §11.4

poll() events bits

A few poll() events bits need some explanation:
POLLPRI:

State change on pseudoterminal master in packet mode

Out-of-band data on stream socket

(Rarely used)

POLLHUP:
Returned on read end of pipe/FIFO if write end is closed

POLLERR:
Returned on write end of pipe/FIFO if read end is closed

POLLRDHUP:
Stream socket peer has closed (writing half of) connection

Linux-specific, since kernel 2.6.17
Useful with epoll edge-triggered mode (see epoll_ctl(2))

POSIX is vague on specifics; details vary across systems

[TLPI §63.2.3]

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-22 §11.4

poll() timeout

timeout determines blocking behavior of poll():

–1: block indefinitely

0: don’t block (“poll” current state of descriptors)

> 0: block for up to timeout milliseconds

When blocking, poll() waits until either:

A file descriptor becomes ready

A signal handler interrupts the call

The timeout is reached

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-23 §11.4

poll() return value

Return value from poll() is one of:

> 0: number of ready FDs

I.e., number of elements in pollfd array that have
revents != 0

0: poll() timed out without any FD becoming ready

–1: error

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-24 §11.4

Example: altio/poll_pipes.c

./ poll_pipes num -pipes [num - writes]

Create num-pipes pipes

Loop num-writes times, each time writing a single byte to
the write end of a randomly selected pipe

Employ poll() to monitor all of the pipe read ends to see
which pipes are readable

Scan the pollfd array returned by poll() and print list of
readable pipes

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-25 §11.4

Example: altio/poll_pipes.c

1 int numPipes , ready , randPipe , numWrites , j;
2 struct pollfd * pollFd ;
3 int (* pfds)[2]; /* File descriptors for all pipes */
4
5 numPipes = getInt (argv [1] , GN_GT_0 , "num - pipes ");
6 numWrites = (argc > 2) ?
7 getInt (argv [2] , GN_GT_0 , "num - writes ") : 1;
8
9 pfds = calloc (numPipes , sizeof (int [2]));

10 pollFd = calloc (numPipes , sizeof (struct pollfd));

Because number of pipes is selected at run-time, we must
allocate structures at run time

getInt() converts string to integer

Allocate array for pipe pairs

calloc() == malloc(nmemb * size), and also zeroes memory

Allocate pollfd array

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-26 §11.4

Example: altio/poll_pipes.c

1 for (j = 0; j < numPipes ; j++)
2 pipe(pfds[j]);
3
4 srandom ((int) time(NULL)); /* Seed RNG */
5 for (j = 0; j < numWrites ; j++) {
6 randPipe = random () % numPipes ;
7 printf (" Writing to fd: %3d (read fd: %3d)\n",
8 pfds[randPipe][1] , pfds[randPipe][0]);
9 write (pfds[randPipe][1] , "a", 1);

10 }

Create pipe pairs

Loop num-writes times, writing a byte to a randomly
selected pipe

Display FD for write and read end of pipe

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-27 §11.4

Example: altio/poll_pipes.c

1 for (j = 0; j < numPipes ; j++) {
2 pollFd [j].fd = pfds[j][0];
3 pollFd [j]. events = POLLIN ;
4 }
5 ready = poll(pollFd , numPipes , 0);
6
7 printf ("poll () returned : %d\n", ready);
8
9 for (j = 0; j < numPipes ; j++)

10 if (pollFd [j]. revents & POLLIN)
11 printf (" Readable : %3d\n", pollFd [j]. fd);

Build pollfd array containing all pipe read ends

Monitor to see if input is possible (POLLIN)

Call poll() with zero timeout

Return value from poll() is number of ready FDs

Walk through revents fields in pollfd array, to see which FDs
are ready for reading

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-28 §11.4

Exercise

1 Write a program ([template: altio/ex.poll_pipes_write.c]) that has the
following command-line syntax:

./ poll_pipes_write num - pipes [num - writes [block -size]]

The program should create num-pipes pipes, and make the write ends of each pipe
nonblocking (set the O_NONBLOCK flag with fcntl(F_SETFL) ; see slide 11-6).

The program should then loop num-writes (default: 1) times, each time writing
block-size (arbitrary) bytes (default: 100) to a randomly selected pipe. During the
loop, the program should count the number of writes that failed because the pipe
was full (write() failed with EAGAIN in errno) and the number of partial writes
(write() wrote fewer bytes than requested).

After the above loop completes, the program should employ a (nonblocking) poll()
call to monitor all of the pipe write ends to see which pipes are still writable, and
then report the following:

A list of the pipes that are writable

The total number of partial writes

The total number of times that write() failed with EAGAIN

Vary the command-line arguments until you see instances of EAGAIN errors and
partial writes. What is the minimum block-size needed in order to see partial writes?

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-29 §11.4

Outline

11 Alternative I/O Models 11-1
11.1 Overview 11-3
11.2 Nonblocking I/O 11-5
11.3 Signal-driven I/O 11-11
11.4 I/O multiplexing: poll() 11-14
11.5 Problems with poll() and select() 11-30
11.6 The epoll API 11-33
11.7 epoll events 11-43
11.8 epoll: edge-triggered notification 11-57
11.9 epoll: API quirks 11-68
11.10 Event-loop programming 11-73

Problems with poll() and select()

poll() + select() are portable, long-standing, and widely used

But, there are scalability problems when monitoring many
FDs, because, on each call:

1 Program passes a data structure to kernel describing all
FDs to be monitored

2 The kernel must recheck all specified FDs for readiness
This includes hooking (and subsequently unhooking) all
FDs to handle case where it is necessary to block

3 The kernel passes a modified data structure describing
readiness of all FDs back to program in user space

4 After the call, the program must inspect readiness state of
all FDs in modified data

⇒ Cost of select() and poll() scales with number of FDs
being monitored

[TLPI §63.2.5]

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-31 §11.5

Problems with poll() and select()

poll() and select() have a design problem:
Typically, set of FDs monitored by application is static

(Or set changes only slowly)

But, kernel doesn’t remember monitored FDs between calls

⇒ Info on all FDs must be copied back & forth on each call

epoll improves performance by fixing this design problem

Kernel maintains a persistent set of FDs that application is
interested in

Application can incrementally change “interest list”

epoll cost scales according to number of I/O events

Much better performance when monitoring many FDs!

Signal-driven I/O scales similarly, for same reasons

[TLPI §63.4.5]

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-32 §11.5

Outline

11 Alternative I/O Models 11-1
11.1 Overview 11-3
11.2 Nonblocking I/O 11-5
11.3 Signal-driven I/O 11-11
11.4 I/O multiplexing: poll() 11-14
11.5 Problems with poll() and select() 11-30
11.6 The epoll API 11-33
11.7 epoll events 11-43
11.8 epoll: edge-triggered notification 11-57
11.9 epoll: API quirks 11-68
11.10 Event-loop programming 11-73

Overview

Like select() and poll(), epoll can monitor multiple FDs

epoll returns readiness information in similar manner to poll()

Two main advantages:

epoll provides much better performance when monitoring
large numbers of FDs (see TLPI §63.4.5)

epoll provides two notification modes: level-triggered
and edge-triggered

Default is level-triggered notification

select() and poll() provide only level-triggered notification

(Signal-driven I/O provides only edge-triggered notification)

Linux-specific, since kernel 2.6.0

[TLPI §63.4]

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-34 §11.6

epoll instances

Central data structure of epoll API is an epoll instance

Persistent data structure maintained in kernel space

Referred to in user space via file descriptor

Can (abstractly) be considered as container for two lists:

Interest list: list of FDs to be monitored

Ready list: list of FDs that are ready for I/O

Ready list is (dynamic) subset of interest list

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-35 §11.6

epoll APIs

The key epoll APIs are:

epoll_create() : create a new epoll instance and return FD
referring to instance

FD is used in the calls below

epoll_ctl() : modify interest list of epoll instance

Add FDs to/remove FDs from interest list

Modify events mask for FDs currently in interest list

epoll_wait() : return items from ready list of epoll instance

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-36 §11.6

epoll kernel data structures and APIs

events data ...

...

...

...

...

...

...

Interest list

Populated by kernel

based on interest list

and I/O events

References to

entries in

interest list

Ready list

epoll instance
File descriptor from

epoll_create() refers to

Populated/modified

by calls to

epoll_ctl()

(subset of) events + data

returned by calls to

epoll_wait()

User space Kernel space

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-37 §11.6

Creating an epoll instance: epoll_create()

include <sys/epoll.h>
int epoll_create (int size);

Creates an epoll instance

size :

Since Linux 2.6.8: serves no purpose, but must be > 0

Before Linux 2.6.8: an estimate of number of FDs to be
monitored via this epoll instance

Returns file descriptor on success, or –1 on error

When FD is no longer required, it should be closed via
close()

Since Linux 2.6.27, epoll_create1() provides improved API

See the man page

[TLPI §63.4.1]

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-38 §11.6

Modifying the epoll interest list: epoll_ctl()

include <sys/epoll.h>
int epoll_ctl (int epfd , int op , int fd ,

struct epoll_event *ev);

Modifies the interest list associated with epoll FD, epfd

fd : identifies which FD in interest list is to have its settings
modified

E.g., FD for pipe, FIFO, terminal, socket, POSIX MQ, or
even another epoll FD

(Can’t be FD for a regular file or directory)

op : operation to perform on interest list

ev : (Later)

[TLPI §63.4.2]

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-39 §11.6

epoll_ctl() op argument

The epoll_ctl() op argument is one of:

EPOLL_CTL_ADD: add fd to interest list of epfd

ev specifies events to be monitored for fd

If fd is already in interest list ⇒ EEXIST

EPOLL_CTL_MOD: modify settings of fd in interest list of epfd

ev specifies new settings to be associated with fd

If fd is not in interest list ⇒ ENOENT

EPOLL_CTL_DEL: remove fd from interest list of epfd

Also removes corresponding entry in ready list, if present

ev is ignored

If fd is not in interest list ⇒ ENOENT

Closing an FD automatically removes it from all epoll
interest lists

B But see later! Manual deletion is sometimes required

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-40 §11.6

The epoll_event structure

epoll_ctl() ev argument is pointer to an epoll_event structure:

struct epoll_event {
uint32_t events ; /* epoll events (bit mask) */
epoll_data_t data; /* User data */

};

typedef union epoll_data {
void *ptr; /* Pointer to user - defined data */
int fd; /* File descriptor */
uint32_t u32; /* 32- bit integer */
uint64_t u64; /* 64- bit integer */

} epoll_data_t ;

ev.events : bit mask of events to monitor for fd

(Similar to events mask given to poll())

data : info to be passed back to caller of epoll_wait() when
fd later becomes ready

Union field: value is specified in one of the members

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-41 §11.6

Example: using epoll_create() and epoll_ctl()

int epfd;
struct epoll_event ev;

epfd = epoll_create (5);

ev.data.fd = fd;
ev. events = EPOLLIN ; /* Monitor for input available */
epoll_ctl (epfd , EPOLL_CTL_ADD , fd , &ev);

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-42 §11.6

Outline

11 Alternative I/O Models 11-1
11.1 Overview 11-3
11.2 Nonblocking I/O 11-5
11.3 Signal-driven I/O 11-11
11.4 I/O multiplexing: poll() 11-14
11.5 Problems with poll() and select() 11-30
11.6 The epoll API 11-33
11.7 epoll events 11-43
11.8 epoll: edge-triggered notification 11-57
11.9 epoll: API quirks 11-68
11.10 Event-loop programming 11-73

Waiting for events: epoll_wait()

include <sys/epoll.h>
int epoll_wait (int epfd , struct epoll_event *evlist ,

int maxevents , int timeout);

Returns info about ready FDs in interest list of epoll
instance of epfd

Blocks until at least one FD is ready

Info about ready FDs is returned in array evlist

I.e., can get information about multiple ready FDs with one
epoll_wait() call

(Caller allocates the evlist array)

maxevents : size of the evlist array

[TLPI §63.4.3]

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-44 §11.7

Waiting for events: epoll_wait()

include <sys/epoll.h>
int epoll_wait (int epfd , struct epoll_event *evlist ,

int maxevents , int timeout);

timeout specifies a timeout for call:

–1: block until an FD in interest list becomes ready

0: perform a nonblocking “poll” to see if any FDs in
interest list are ready

> 0: block for up to timeout milliseconds or until an FD in
interest list becomes ready

Return value:

> 0: number of items placed in evlist

0: no FDs became ready within interval specified by timeout

–1: an error occurred

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-45 §11.7

Waiting for events: epoll_wait()

include <sys/epoll.h>
int epoll_wait (int epfd , struct epoll_event *evlist ,

int maxevents , int timeout);

Info about multiple FDs can be returned in the array evlist

Each element of evlist returns info about one file descriptor:

events is a bit mask of events that have occurred for FD

data is ev.data value currently associated with FD in the
interest list

NB: the FD itself is not returned!
Instead, we put FD into ev.data.fd when calling epoll_ctl(),
so that it is returned via epoll_wait()

(Or, put FD into a structure pointed to by ev.data.ptr)

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-46 §11.7

Waiting for events: epoll_wait()

include <sys/epoll.h>
int epoll_wait (int epfd , struct epoll_event *evlist ,

int maxevents , int timeout);

� If > maxevents FDs are ready, successive epoll_wait()
calls round-robin through FDs

Helps prevent file descriptor starvation

� In multithreaded programs:

One thread can modify interest list (epoll_ctl()) while
another thread is blocked in epoll_wait()

epoll_wait() call will return if a newly added FD becomes
ready

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-47 §11.7

epoll events

Following table shows:
Bits given in ev.events to epoll_ctl()

Bits returned in evlist[].events by epoll_wait()

Bit epoll_ctl() ? epoll_wait() ? Description
EPOLLIN • • Normal-priority data can be read
EPOLLPRI • • High-priority data can be read
EPOLLRDHUP • • Shutdown on peer socket
EPOLLOUT • • Data can be written

EPOLLONESHOT •
Disable monitoring after event
notification

EPOLLET • Employ edge-triggered notification
EPOLLERR • An error has occurred
EPOLLHUP • A hangup occurred

Other than EPOLLONESHOT and EPOLLET, bits have same meaning as similarly named
poll() bit flags

EPOLLIN, EPOLLPRI, EPOLLRDHUP, and EPOLLOUT are returned by epoll_wait() only
if specified when adding FD using epoll_ctl()

[TLPI §63.4.3]

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-48 §11.7

Example: altio/epoll_input.c

./ epoll_input file ...

Monitors one or more files using epoll API to see if input is
possible

Suitable files to give as arguments are:

FIFOs

Terminal device names

(May need to run sleep command in FG on the other
terminal, to prevent shell stealing input)

Standard input

/dev/stdin

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-49 §11.7

Example: altio/epoll_input.c (1)

define MAX_BUF 1000 /* Max. bytes for read () */
define MAX_EVENTS 5

/* Max. number of events to be returned from
a single epoll_wait () call */

int epfd , ready , fd , s, j, numOpenFds ;
struct epoll_event ev;
struct epoll_event evlist [MAX_EVENTS];
char buf[MAX_BUF];

epfd = epoll_create (argc - 1);

Declarations for various variables

Create an epoll instance, obtaining epoll FD

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-50 §11.7

Example: altio/epoll_input.c (2)

for (j = 1; j < argc; j++) {
fd = open(argv[j], O_RDONLY);
printf (" Opened \"%s\" on fd %d\n", argv[j], fd);

ev. events = EPOLLIN ;
ev.data.fd = fd;
epoll_ctl (epfd , EPOLL_CTL_ADD , fd , &ev);

}

numOpenFds = argc - 1;

Open each of the files named on command line

Each file is monitored for input (EPOLLIN)

fd placed in ev.data, so it is returned by epoll_wait()

Add the FD to epoll interest list (epoll_ctl())

Track the number of open FDs

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-51 §11.7

Example: altio/epoll_input.c (3)

while (numOpenFds > 0) {
printf ("About to epoll_wait ()\n");
ready = epoll_wait (epfd , evlist , MAX_EVENTS , -1);
if (ready == -1) {

if (errno == EINTR)
continue ; /* Restart if interrupted

by signal */
else

errExit (" epoll_wait ");
}
printf ("Ready: %d\n", ready);

Loop, fetching epoll events and analyzing results

Loop terminates when all FDs has been closed

epoll_wait() call places up to MAX_EVENTS events in evlist

timeout == –1 ⇒ infinite timeout

Return value of epoll_wait() is number of ready FDs

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-52 §11.7

Example: altio/epoll_input.c (4)

for (j = 0; j < ready; j++) {
printf (" fd =%d; events : %s%s%s\n", evlist [j]. data.fd ,

(evlist [j]. events & EPOLLIN) ? " EPOLLIN " : "",
(evlist [j]. events & EPOLLHUP) ? " EPOLLHUP " : "",
(evlist [j]. events & EPOLLERR) ? " EPOLLERR " : "");

if (evlist [j]. events & EPOLLIN) {
s = read(evlist [j]. data.fd , buf , MAX_BUF);
printf (" read %d bytes : %.*s\n", s, s, buf);

} else if (evlist [j]. events & (EPOLLHUP | EPOLLERR)) {
printf (" closing fd %d\n", evlist [j]. data.fd);
close (evlist [j]. data.fd);
numOpenFds --;

}
}

}

Scan up to ready items in evlist

Display events bits

If EPOLLIN event occurred, read some input and display it on stdout

%.*s ⇒ print string with field width taken from argument list (s)

Otherwise, if error or hangup, close FD and decrements FD count

Code correctly handles case where both EPOLLIN and EPOLLHUP are
set in evlist[j].events

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-53 §11.7

Exercises

1 Write a client ([template: altio/ex.is_chat_cl.c]) that
communicates with the TCP chat server program, is_chat_sv.c.
The program should be run with the following command line:

./ is_chat_cl <host > <port > [<nickname >]

The program should create a connection to the server, and then use
the epoll API to monitor both the terminal and the TCP socket for
input. All input that becomes available on the socket should be written
to the terminal and vice versa.

Each time the program sends input from the terminal to the
socket, that input should be prepended by the nickname supplied
on the command line. If no nickname is supplied, then use the
string returned by getlogin(3). (snprintf(3) provides an easy way
to concatenate the strings.)

The program should terminate if it detects end-of-file or an error
condition on either file descriptor.

Calling epoll_wait() with maxevents==1 will simplify the code!

Bonus points if you find a way to crash the server (reproducibly)!

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-54 §11.7

Exercises

2 Write the chat server ([template: altio/ex.is_chat_sv.c]).

Note the following points:

The program should take one command-line argument: the port
number to which it should bind its listening socket.

The program should accept and handle multiple simultaneous
client connections. Input read from any client should be
broadcast to all other clients.

Use the epoll API to manage the file descriptors.

You should use nonblocking file descriptors to ensure that the
server never blocks when accepting connections or when reading
or writing to clients.

When the server detects end-of file or an error (other than
EAGAIN) while reading or writing on a client connection, it should
close that connection. (Remember that closing a file descriptor
automatically removes it from any epoll interest lists of which it
is a member.)

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-55 §11.7

Exercises

3 Write a program ([template: altio/ex.epoll_pipes.c]) which
performs the same task as the altio/poll_pipes.c program, but
uses the epoll API instead of poll().

Hints:

After writing to the pipes, you will need to call epoll_wait() in a
loop. The loop should be terminated when epoll_wait() indicates
that there are no more ready file descriptors.

After each call to epoll_wait(), you should display each ready
pipe read file descriptor and then drain all input from that file
descriptor so that it does not indicate as ready in future calls to
epoll_wait().

In order to drain a pipe without blocking, you will need to make
the file descriptor for the read end of the pipe nonblocking.

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-56 §11.7

Outline

11 Alternative I/O Models 11-1
11.1 Overview 11-3
11.2 Nonblocking I/O 11-5
11.3 Signal-driven I/O 11-11
11.4 I/O multiplexing: poll() 11-14
11.5 Problems with poll() and select() 11-30
11.6 The epoll API 11-33
11.7 epoll events 11-43
11.8 epoll: edge-triggered notification 11-57
11.9 epoll: API quirks 11-68
11.10 Event-loop programming 11-73

Edge-triggered notification

By default, epoll provides level-triggered (LT) notification

Tells us whether an I/O operation can be performed on
FD without blocking

Like poll() and select()

EPOLLET provides edge-triggered (ET) notification
Has I/O activity occurred since epoll_wait() last
notified about this FD?

Or, if no epoll_wait() since FD was added/modified by
epoll_ctl(), then: is FD ready?

Example:

struct epoll_event ev;
ev.data.fd = fd
ev. events = EPOLLIN | EPOLLET ;
epoll_ctl (epfd , EPOLL_CTL_ADD , fd , &ev);

[TLPI §63.4.6]

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-58 §11.8

Edge-triggered notification

Illustration of difference between LT and ET notification:
1 Monitoring a socket for input possible (EPOLLIN)

2 Input arrives on socket

3 We call epoll_wait(), which informs us that FD is ready

We perhaps consume some (but not all) available input

No further input arrives on socket

4 We call epoll_wait() again

LT notification: second epoll_wait() would (again) report
FD as ready

Because outstanding data is still available for reading

ET notification: second epoll_wait() would not report FD
as ready

Because no I/O activity occurred since previous
epoll_wait()

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-59 §11.8

Uses for edge-triggered notification

Can be more efficient: application is not repeatedly
reminded that FD is ready

Example: application that (periodically) generates data to
be written to a socket

Application does not always have data to write

Application monitors socket for writability (EPOLLOUT)
Application is also monitoring other FDs for I/O possible

At some point, socket is full (output not possible)

Peer drains some data, socket becomes writable

LT notification: every epoll_wait() would (immediately)
wake and say FD is writable

ET notification: only first epoll_wait() would say FD is
writable

Application could cache that info for later action (e.g.,
when data is generated)

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-60 §11.8

Edge-triggered notification provides an optimization

Scenario: multiple threads/processes are epoll_wait()-ing on
same epoll FD

E.g., epoll FD is monitoring listening socket

LT notification: all waiters are woken up when connection
request arrives

ET notification: only one waiter is woken up

Avoids thundering herd problem

Code examples: altio/multithread_epoll_wait.c,
altio/epoll_flags_fork.c

The EPOLLEXCLUSIVE flag provides a similar behavior in
some scenarios when using level-triggered notification

Since Linux 4.5

See epoll_ctl(2) and altio/epoll_flags_fork.c

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-61 §11.8

Edge-triggered notification and EPOLLONESHOT

Scenario: monitoring socket for input available with
EPOLLET

Assumption: we want to know when input is available, but
don’t want to read it yet

(So, we use EPOLLET to avoid repeated notifications)

New input keeps appearing ⇒ ET notification keeps
notifying

Really, we needed only first notification

Solution: EPOLLONESHOT

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-62 §11.8

One-shot monitoring: EPOLLONESHOT

Specifying EPOLLONESHOT in events causes FD to be
reported just once by epoll_wait()

FD is then marked inactive in interest list

FD remains in interest list, and can be reactivated using
epoll_ctl(EPOLL_CTL_MOD)

Continuing previous example: reenable notification after
draining input from socket

[TLPI §63.4.3]

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-63 §11.8

Using edge-triggered notification

Normally employed with nonblocking I/O
Can’t monitor “I/O level”, so must do nonblocking I/O
calls until no more I/O is possible

Otherwise: risk blocking when doing I/O

Beware of FD starvation

Scenarios where responding to a busy FD leaves other ready
FDs starved of attention

(Starvation scenarios can also occur with level-triggered
notification)

See TLPI §63.4.6

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-64 §11.8

Exercises

The altio/i_epoll.c program can be used to perform epoll monitoring and file I/O
operations on the objects named in its command-line arguments. The program is
interactive, and supports the following commands:

p [<timeout >]
Do epoll_wait () with millisecond timeout (default : 0)

e <fd > [<flags >]
Modify epoll settings of <fd >; <flags > can include :
’r’ - EPOLLIN
’w’ - EPOLLOUT
’e’ - EPOLLET
’o’ - EPOLLONESHOT
If no flags are given , disable <fd > in the interest list

r <fd > <size >
Blocking read of <size > bytes from <fd >

R <fd > <size >
Nonblocking read of <size > bytes from <fd >

w <fd > <size > [<char >]
Blocking write of <size > bytes to <fd >; <char > is character
to write (default : ’x’)

W <fd > <size > [<char >]
Nonblocking write of <size > bytes to <fd >

Each command-line argument has the form <path>[:<flags>] (to open a file) or
s%<host>%<port>[:<flags>] (to connect a socket to a specified host/port). <flags> is
as described above, and defaults to “r”. (If testing with sockets, you will find the
command ncat -l <port> useful, in order to create a server that you can connect to.)

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-65 §11.8

Exercises

The following exercises are intended to demonstrate the effect of the EPOLLET and
EPOLLONESHOT flags.

1 In separate windows, create two FIFOs and use cat to write to each FIFO:

mkfifo x
cat > x

mkfifo y
cat > y

2 Run the i_epoll program, using it to monitor both FIFOs for reading, specifying the
EPOLLET flag for the FIFO y; note the file descriptor numbers used for each FIFO:

./ i_epoll x:r y:re

3 Type some input into both cat commands, and then use the “p” command to
perform an epoll_wait() :

i_epoll > p

You should find that both file descriptors report as ready for reading (EPOLLIN).

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-66 §11.8

Exercises

4 Enter the “p” command again. You should find that only the FIFO x reports
EPOLLIN. (y does not report as ready because no new input has appeared on the
FIFO.)

5 Type some input into the cat command that is writing to the FIFO y, and once
more use the “p” command to perform an epoll_wait(). You should find that both
FIFOs report EPOLLIN. (y reports as ready again because new input has appeared
on the FIFO.)

6 Switch the monitoring of the FIFO y to use EPOLLET and EPOLLONESHOT with the
command "e <fd> reo".

7 Type some input into the FIFO y, and then use the “p” command to perform an
epoll_wait(). You should find that both x and y report EPOLLIN.

8 Type some more input into the FIFO y, and again use the “p” command to perform
an epoll_wait(). You should find that y does not report as ready (because, after it
reported as ready in the previous step, it was disabled in the interest list by
EPOLLONESHOT).

9 Reenable the FIFO y in the interest list using the command "e <fd> re" and again
use the “p” command to perform an epoll_wait(). You should find that y reports
EPOLLIN.

10 Try any other experiments you might think of!

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-67 §11.8

Outline

11 Alternative I/O Models 11-1
11.1 Overview 11-3
11.2 Nonblocking I/O 11-5
11.3 Signal-driven I/O 11-11
11.4 I/O multiplexing: poll() 11-14
11.5 Problems with poll() and select() 11-30
11.6 The epoll API 11-33
11.7 epoll events 11-43
11.8 epoll: edge-triggered notification 11-57
11.9 epoll: API quirks 11-68
11.10 Event-loop programming 11-73

epoll and duplication of file descriptors

Entries in epoll interest list are associated with combination
of file descriptor (FD) and open file description (OFD)

Not just FD alone

B Lifetime of interest list entry == lifetime of OFD

Can provide some surprises when FDs are duplicated...

[TLPI §63.4.4]

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-69 §11.9

epoll and duplication of file descriptors

Suppose that fd in code below refers to a socket...

ev. events = EPOLLIN ;
ev.data.fd = fd;
epoll_ctl (epfd , EPOLL_CTL_ADD , fd , &ev);
newfd = dup(fd);
close(fd);
epoll_wait (epfd , ...);

What happens if some input now arrives on the socket?

epoll_wait() might still return events for registration of fd
Because open file description is still alive and present in
interest list

OFD is kept alive by newfd

B Notifications return data given in registration of fd !!

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-70 §11.9

epoll and duplication of file descriptors

Analogous scenarios possible with fork() :

ev. events = EPOLLIN ;
ev.data.fd = fd;
epoll_ctl (epfd , EPOLL_CTL_ADD , fd , &ev);
if (fork () == 0) {

/* Child continues , does not close ’fd’ */
} else {

close(fd);
epoll_wait (epfd , ...);

}

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-71 §11.9

epoll and duplication of file descriptors

B Can’t EPOLL_CTL_DEL fd after close()

⇒ EBADF

Must either:
Close duplicate FDs

B But you may not know about duplicate if it was created
by a library function that used dup() or fork()

Or manually EPOLL_CTL_DEL fd before closing it

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-72 §11.9

Outline

11 Alternative I/O Models 11-1
11.1 Overview 11-3
11.2 Nonblocking I/O 11-5
11.3 Signal-driven I/O 11-11
11.4 I/O multiplexing: poll() 11-14
11.5 Problems with poll() and select() 11-30
11.6 The epoll API 11-33
11.7 epoll events 11-43
11.8 epoll: edge-triggered notification 11-57
11.9 epoll: API quirks 11-68
11.10 Event-loop programming 11-73

Event-loop programming

select()/poll()/epoll lend themselves to event-loop
programming

I.e., program just sits in a loop, waiting on events from file
descriptors

Monitored FDs can include pipes, sockets, terminals,
devices, inotify, and even other epoll instances

Events are processed synchronously

Problem: some other events of interest are not
(traditionally) synchronous/aren’t monitorable via FDs:

Signals

Timer expirations

IPC synchronization events

E.g., semaphore is incremented (sem_post())

Process state transitions

E.g., child process termination

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-74 §11.10

Event-loop programming

Linux solution: turn those other events into file descriptors:

Signals ⇒ signalfd()

Timers ⇒ timerfd (timerfd_create(), timerfd_settime(), ...)

Synchronization ⇒ eventfd()

Process state transitions ⇒ “PID” file descriptors

PID FDs are returned by pidfd_open(),
clone()/clone3() CLONE_PIDFD

Currently (Linux 5.4), only process-termination transitions
are notified

Monitor FDs produced by those mechanisms along with
other FDs, using select()/poll()/epoll

System Programming Fundamentals ©2020, Michael Kerrisk Alternative I/O Models 11-75 §11.10

Notes

Linux/UNIX System Programming Fundamentals

Wrapup

Michael Kerrisk, man7.org © 2020

mtk@man7.org

NDC TechTown
August 2020

Outline

12 Wrapup 12-1
12.1 Wrapup 12-3

Outline

12 Wrapup 12-1
12.1 Wrapup 12-3

Course materials

I’m the (sole) producer of the course book and example
programs

Course materials are continuously revised

Send corrections and suggestions for improvements to
mtk@man7.org

System Programming Fundamentals ©2020, Michael Kerrisk Wrapup 12-4 §12.1

The Linux man-pages project

Your participation in the course indirectly supports work on
the Linux man-pages project... Thanks!

The Linux man-pages project:
Man pages for the Linux user-space APIs (system calls,
etc.) and C library APIs

Principally, pages in sections 2 and 3

http://www.kernel.org/doc/man-pages/

Patches and contributions welcome

https://www.kernel.org/doc/man-pages/contributing.html

Latest man pages online at
http://man7.org/linux/man-pages/

System Programming Fundamentals ©2020, Michael Kerrisk Wrapup 12-5 §12.1

Subscribe to LWN!

LWN (http://lwn.net/) == core online publication of Linux
kernel and “plumbing” development community

Latest info on kernel development and new features

+ related topics (development process, legal issues facing
FOSS, etc.)

Almost entirely subscriber-funded

Please consider subscribing: https://lwn.net/subscribe/Info

They also seek guest authors

https://lwn.net/op/AuthorGuide.lwn

System Programming Fundamentals ©2020, Michael Kerrisk Wrapup 12-6 §12.1

Marketing

Independent trainer, consultant, and writer

Author of The Linux Programming Interface

Reputation / word-of-mouth are important for my business...

Let people know about these courses!
Linux/UNIX system programming

Linux security and isolation APIs

Creating and using shared libraries

System programming for Linux containers

Linux/UNIX network programming

POSIX Threads programming

Subsets/combinations of the above

Further courses to be announced: http://man7.org/training/

System Programming Fundamentals ©2020, Michael Kerrisk Wrapup 12-7 §12.1

Thanks!

mtk@man7.org @mkerrisk linkedin.com/in/mkerrisk

PGP fingerprint: 4096R/3A35CE5E

http://man7.org/training/

	Course Introduction 1-1
	Course overview 1-3
	Course materials and resources 1-9
	Introductions 1-14

	Fundamental Concepts 2-1
	System calls and library functions 2-3
	Error handling 2-10
	System data types 2-17
	Notes on code examples 2-22

	File I/O and Files 3-1
	File I/O overview 3-3
	open(), read(), write(), and close() 3-7
	The file offset and lseek() 3-21
	Relationship between file descriptors and open files 3-26
	Duplicating file descriptors 3-35
	File status flags (and fcntl()) 3-41
	Retrieving file information: stat() 3-49

	Directories and Links 4-1
	Directories and (hard) links 4-3
	Symbolic links 4-8
	Hard links: system calls and library functions 4-14
	Symbolic links: system calls and library functions 4-20
	Current working directory 4-23
	Operating relative to a directory (openat() etc.) 4-27
	Scanning directories 4-38

	Processes 5-1
	Process IDs 5-3
	Process memory layout 5-6
	Command-line arguments 5-9
	The environment list 5-11
	The /proc filesystem 5-16

	Signals: Introduction 6-1
	Overview of signals 6-3
	Signal dispositions 6-8
	Signal handlers 6-16
	Useful signal-related functions 6-21
	Signal sets, the signal mask, and pending signals 6-25

	Signals: Signal Handlers 7-1
	Designing signal handlers 7-3
	Async-signal-safe functions 7-7
	Interrupted system calls 7-19
	SA_SIGINFO signal handlers 7-23
	The signal trampoline 7-27

	Process Lifecycle 8-1
	Introduction 8-3
	Creating a new process: fork() 8-6
	Process termination 8-12
	Monitoring child processes 8-18
	Orphans and zombies 8-29
	The SIGCHLD signal 8-37
	Executing programs: execve() 8-41

	System Call Tracing with strace 9-1
	Getting started 9-3
	Tracing child processes 9-10
	Filtering strace output 9-14
	System call tampering 9-20
	Further strace options 9-26

	Pipes and FIFOs 10-1
	Overview 10-3
	Creating and using pipes 10-8
	Connecting filters with pipes 10-20
	FIFOs 10-33

	Alternative I/O Models 11-1
	Overview 11-3
	Nonblocking I/O 11-5
	Signal-driven I/O 11-11
	I/O multiplexing: poll() 11-14
	Problems with poll() and select() 11-30
	The epoll API 11-33
	epoll events 11-43
	epoll: edge-triggered notification 11-57
	epoll: API quirks 11-68
	Event-loop programming 11-73

	Wrapup 12-1
	Wrapup 12-3

