
Background topics

System Programming
Essentials for IPC
Michael Kerrisk, man7.org © 2019

mtk@man7.org

December 2019

Outline

2 System Programming Essentials for IPC 2-1
2.1 File I/O overview 2-3
2.2 open(), read(), write(), and close() 2-7
2.3 Relationship between file descriptors and open files 2-21
2.4 Duplicating file descriptors 2-30
2.5 File status flags (and fcntl()) 2-35
2.6 Process credentials 2-42
2.7 Signal dispositions 2-49
2.8 Signal handlers 2-57
2.9 Process lifecycle 2-61
2.10 Creating a new process: fork() 2-64
2.11 Waiting on a child process 2-70
2.12 Executing programs: execve() 2-80
2.13 The /proc filesystem 2-89

Outline

2 System Programming Essentials for IPC 2-1
2.1 File I/O overview 2-3
2.2 open(), read(), write(), and close() 2-7
2.3 Relationship between file descriptors and open files 2-21
2.4 Duplicating file descriptors 2-30
2.5 File status flags (and fcntl()) 2-35
2.6 Process credentials 2-42
2.7 Signal dispositions 2-49
2.8 Signal handlers 2-57
2.9 Process lifecycle 2-61
2.10 Creating a new process: fork() 2-64
2.11 Waiting on a child process 2-70
2.12 Executing programs: execve() 2-80
2.13 The /proc filesystem 2-89

System calls versus stdio

C programs usually use stdio package for file I/O
Library functions layered on top of I/O system calls

System calls Library functions
file descriptor (int) file stream (FILE *)
open(), close() fopen(), fclose()
lseek() fseek(), ftell()
read() fgets(), fscanf(), fread() . . .
write() fputs(), fprintf(), fwrite(), . . .
– feof(), ferror()

We presume understanding of stdio; ⇒ focus on system calls

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-4 §2.1

File descriptors

All I/O is done using file descriptors (FDs)
nonnegative integer that identifies an open file

Used for all types of files
terminals, regular files, pipes, FIFOs, devices, sockets, ...

3 FDs are normally available to programs run from shell:
(POSIX names are defined in <unistd.h>)

FD Purpose POSIX name stdio stream
0 Standard input STDIN_FILENO stdin
1 Standard output STDOUT_FILENO stdout
2 Standard error STDERR_FILENO stderr

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-5 §2.1

Key file I/O system calls

Four fundamental calls:
open() : open a file, optionally creating it if needed

Returns file descriptor used by remaining calls
read() : input
write() : output
close() : close file descriptor

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-6 §2.1

Outline

2 System Programming Essentials for IPC 2-1
2.1 File I/O overview 2-3
2.2 open(), read(), write(), and close() 2-7
2.3 Relationship between file descriptors and open files 2-21
2.4 Duplicating file descriptors 2-30
2.5 File status flags (and fcntl()) 2-35
2.6 Process credentials 2-42
2.7 Signal dispositions 2-49
2.8 Signal handlers 2-57
2.9 Process lifecycle 2-61
2.10 Creating a new process: fork() 2-64
2.11 Waiting on a child process 2-70
2.12 Executing programs: execve() 2-80
2.13 The /proc filesystem 2-89

open() : opening a file

include <sys/stat.h>
include <fcntl.h>
int open(const char *pathname , int flags ,

... /* mode_t mode */);

Opens existing file / creates and opens new file
Arguments:

pathname identifies file to open
flags controls semantics of call

e.g., open an existing file vs create a new file
mode specifies permissions when creating new file

Returns: a file descriptor (nonnegative integer)
(Guaranteed to be lowest available FD)

[TLPI §4.3]
Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-8 §2.2

open() flags argument

Created by ORing (|) together:
Access mode

Specify exactly one of O_RDONLY, O_WRONLY, or O_RDWR

File creation flags (bit flags)
File status flags (bit flags)

[TLPI §4.3.1]
Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-9 §2.2

File creation flags

File creation flags:
Affect behavior of open() call
Can’t be retrieved or changed

Examples:
O_CREAT: create file if it doesn’t exist

mode argument must be specified
Without O_CREAT, can open only an existing file (else:
ENOENT)

O_EXCL: create “exclusively”
Give an error (EEXIST) if file already exists
Only meaningful with O_CREAT

O_TRUNC: truncate existing file to zero length
We’ll see other flags later

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-10 §2.2

File status flags

File status flags:
Affect semantics of subsequent file I/O
Can be retrieved and modified using fcntl()

Examples:
O_APPEND: always append writes to end of file
O_SYNC: make file writes synchronous
O_NONBLOCK: nonblocking I/O
More on these later!

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-11 §2.2

open() examples

Open existing file for reading:
fd = open(" script .txt", O_RDONLY);

Open new file for read-write, ensuring we are creator:
fd = open(" myfile .txt",

O_RDWR | O_CREAT | O_EXCL ,
S_IRUSR | S_IWUSR); /* rw ------- */

Open for writing, create if necessary, truncate, always
append writes:
fd = open("app.log",

O_WRONLY | O_CREAT | O_TRUNC | O_APPEND ,
S_IRUSR | S_IWUSR);

(O_TRUNC plus O_APPEND could be useful if FD is to be
inherited by child process that also writes to file)

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-12 §2.2

read() : reading from a file

include <unistd .h>
ssize_t read(int fd , void *buffer , size_t count);

Arguments:
fd: file descriptor
buffer: pointer to buffer to store data

� No terminating null byte is placed at end of buffer
count: number of bytes to read

(buffer must be at least this big)
(size_t and ssize_t are integer types)

Returns:
> 0: number of bytes read

May be < count (e.g., terminal read() gets only one line)
0: end of file
-1: error

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-13 §2.2

write() : writing to a file

include <unistd .h>
ssize_t write(int fd , const void *buffer , size_t count);

Arguments:
fd: file descriptor
buffer: pointer to data to be written
count: number of bytes to write

Returns:
Number of bytes written

May be less than count (e.g., device full)
-1 on error

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-14 §2.2

close() : closing a file

include <unistd .h>
int close(fd);

fd: file descriptor
Returns:

0: success
-1: error

Really should check for error!
Accidentally closing same FD twice

I.e., detect program logic error
Filesystem-specific errors

E.g., NFS commit failures may be reported only at close()
Note: close() always releases FD, even on failure return

See close(2) man page
Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-15 §2.2

Example: copy.c

$./ copy old -file new -file

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-16 §2.2

Example: fileio/copy.c (snippet)

Always remember to handle errors!
#define BUF_SIZE 1024
char buf[BUF_SIZE];

infd = open(argv[1], O_RDONLY);
if (infd == -1) errExit("open %s", argv[1]);

flags = O_CREAT | O_WRONLY | O_TRUNC;
mode = S_IRUSR | S_IWUSR | S_IRGRP; /* rw-r----- */
outfd = open(argv[2], flags, mode);
if (outfd == -1) errExit("open %s", argv[2]);

while ((nread = read(infd, buf, BUF_SIZE)) > 0)
if (write(outfd, buf, nread) != nread)

fatal("couldn’t write whole buffer");
if (nread == -1) errExit("read");

if (close(infd) == -1) errExit("close");
if (close(outfd) == -1) errExit("close");

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-17 §2.2

Universality of I/O

The fundamental I/O system calls work on almost all file
types:
$ ls > mylist
$./ copy mylist new # Regular file

$./ copy mylist /dev/tty # Device

$ mkfifo f; cat f & # FIFO
$./ copy mylist f

Note: the term file can be ambiguous:
A generic term, covering disk files, directories, sockets,
FIFOs, devices, and so on
Or specifically, a disk file in a filesystem

To clearly distinguish the latter, the term regular file is
sometimes used

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-18 §2.2

Exercise notes

For many exercises, there are templates for the solutions
Filenames: ex.*.c
Look for FIXMEs to see what pieces of code you must add
� You will need to edit the corresponding Makefile to
add a new target for the executable

Look for the EXERCISE_SOLNS_EXE macro
-EXERCISE_FILES_EXE = # ex. prog_a ex. prob_b
+ EXERCISE_FILES_EXE = ex. prog_a # ex. prog_b

Get a make tutorial now if you need one

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-19 §2.2

Exercise

1 Using the system calls open(), close(), read(), and write(), implement
the command tee [-a] file ([template: fileio/ex.tee.c]). This
command writes a copy of its standard input to standard output and to
the file named in its command-line argument. If file does not exist, it
should be created. If file already exists, it should be truncated to
zero length (O_TRUNC). The program should support the -a
command-line option, which appends (O_APPEND) output to the file if
it already exists, rather than truncating the file. To test the program,
use the test target in the Makefile: make tee_test
Some hints:

Remember that you will need to add a target in the Makefile!
Standard input & output are automatically opened for a process.
Why does “man open” show the wrong manual page? It finds a
page in the wrong section first. Try “man 2 open” instead.
while inotifywait -q . ; do echo; echo; make; done

You may need to install the inotify-tools package
Command-line options can be parsed using getopt(3).

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-20 §2.2

Outline

2 System Programming Essentials for IPC 2-1
2.1 File I/O overview 2-3
2.2 open(), read(), write(), and close() 2-7
2.3 Relationship between file descriptors and open files 2-21
2.4 Duplicating file descriptors 2-30
2.5 File status flags (and fcntl()) 2-35
2.6 Process credentials 2-42
2.7 Signal dispositions 2-49
2.8 Signal handlers 2-57
2.9 Process lifecycle 2-61
2.10 Creating a new process: fork() 2-64
2.11 Waiting on a child process 2-70
2.12 Executing programs: execve() 2-80
2.13 The /proc filesystem 2-89

Relationship between file descriptors and open files

Multiple file descriptors can refer to same open file
3 kernel data structures describe relationship:

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-22 §2.3

File descriptor table

Per-process table with one entry for each FD opened by process:
Flags controlling operation of FD (close-on-exec flag)
Reference to open file description
struct fdtable in include/linux/fdtable.h

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-23 §2.3

Open file table (table of open file descriptions)

System-wide table, one entry for each open file on system:
File offset
File access mode (R / W / R-W, from open())
File status flags (from open())
Signal-driven I/O settings
Reference to inode object for file
struct file in include/linux/fs.h

Following terms are commonly treated as synonyms:
open file description (OFD) (POSIX)
open file table entry or open file handle

(These two are ambiguous; POSIX terminology is
preferable)

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-24 §2.3

(In-memory) inode table

System-wide table drawn from file inode information in filesystem:
File type (regular file, FIFO, socket, . . .)
File permissions
Other file properties (size, timestamps, . . .)
struct inode in include/linux/fs.h

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-25 §2.3

Duplicated file descriptors (intraprocess)

A process may have multiple FDs referring to same OFD
Achieved using dup() or dup2()

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-26 §2.3

Duplicated file descriptors (between processes)

Two processes may have FDs referring to same OFD
Can occur as a result of fork()

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-27 §2.3

Distinct open file table entries referring to same file

Two processes may have FDs referring to distinct OFDs that refer
to same inode

Two processes independently open()ed same file

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-28 §2.3

Why does this matter?

Two different FDs referring to same OFD share file offset
(File offset == location for next read()/write())
Changes (read(), write(), lseek()) via one FD visible via
other FD
Applies to both intraprocess & interprocess sharing of OFD

Similar scope rules for status flags (O_APPEND, O_SYNC, . . .)
Changes via one FD are visible via other FD

(fcntl(F_SETFL) and fcntl(F_GETFL))

Conversely, changes to FD flags (held in FD table) are
private to each process and FD
kcmp(2) KCMP_FILE operation can be used to test if two
FDs refer to same OFD

Linux-specific

[TLPI §5.4]
Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-29 §2.3

Outline

2 System Programming Essentials for IPC 2-1
2.1 File I/O overview 2-3
2.2 open(), read(), write(), and close() 2-7
2.3 Relationship between file descriptors and open files 2-21
2.4 Duplicating file descriptors 2-30
2.5 File status flags (and fcntl()) 2-35
2.6 Process credentials 2-42
2.7 Signal dispositions 2-49
2.8 Signal handlers 2-57
2.9 Process lifecycle 2-61
2.10 Creating a new process: fork() 2-64
2.11 Waiting on a child process 2-70
2.12 Executing programs: execve() 2-80
2.13 The /proc filesystem 2-89

A problem

./ myprog > output.log 2>&1

What does the shell syntax, 2>&1, do?
How does the shell do it?
Open file twice, once on FD 1, and once on FD 2?

FDs would have separate OFDs with distinct file offsets ⇒
standard output and error would overwrite
File may not even be open()-able:

e.g., ./myprog 2>&1 | less

Need a way to create duplicate FD that refers to same OFD

[TLPI §5.5]
Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-31 §2.4

Duplicating file descriptors

include <unistd .h>
int dup(int oldfd);

Arguments:
oldfd: an existing file descriptor

Returns new file descriptor (on success)
New file descriptor is guaranteed to be lowest
available

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-32 §2.4

Duplicating file descriptors

FDs 0, 1, and 2 are normally always open, so shell can
achieve 2>&1 redirection by:
close(STDERR_FILENO); /* Frees FD 2 */
newfd = dup(STDOUT_FILENO); /* Reuses FD 2 */

But what if FD 0 was closed?

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-33 §2.4

Duplicating file descriptors

include <unistd .h>
int dup2(int oldfd , int newfd);

Like dup(), but uses newfd for the duplicate FD
Silently closes newfd if it was open
Closing + reusing newfd is done atomically

Important: otherwise newfd might be re-used in between
Does nothing if newfd == oldfd
Returns new file descriptor (i.e., newfd) on success

dup2(STDOUT_FILENO, STDERR_FILENO);
See dup2(2) man page for more details

[TLPI §5.5]
Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-34 §2.4

Outline

2 System Programming Essentials for IPC 2-1
2.1 File I/O overview 2-3
2.2 open(), read(), write(), and close() 2-7
2.3 Relationship between file descriptors and open files 2-21
2.4 Duplicating file descriptors 2-30
2.5 File status flags (and fcntl()) 2-35
2.6 Process credentials 2-42
2.7 Signal dispositions 2-49
2.8 Signal handlers 2-57
2.9 Process lifecycle 2-61
2.10 Creating a new process: fork() 2-64
2.11 Waiting on a child process 2-70
2.12 Executing programs: execve() 2-80
2.13 The /proc filesystem 2-89

File status flags

Control semantics of I/O on a file
(O_APPEND, O_NONBLOCK, O_SYNC, . . .)

Associated with open file description
Set when file is opened
Can be retrieved and modified using fcntl()

[TLPI §5.3]
Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-36 §2.5

fcntl() : file control operations

include <fcntl.h>
int fcntl(int fd , int cmd /* , arg */);

Performs control operations on an open file
Arguments:

fd: file descriptor
cmd: the desired operation
arg: optional, type depends on cmd

Return on success depends on cmd; -1 returned on error
Many types of operation

file locking, signal-driven I/O, file descriptor flags . . .

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-37 §2.5

Retrieving file status flags and access mode

Retrieving flags (both access mode and status flags)
flags = fcntl(fd , F_GETFL);

Check access mode
amode = flags & O_ACCMODE ;
if (amode == O_RDONLY || amode == O_RDWR)

printf ("File is readable \n");

� ’read’ and ’write’ are not separate bits!
if (flags & O_RDONLY) /* Wrong !! */

printf ("File is readable \n");

Access mode is a 2-bit field that is an enumeration:
00 == O_RDONLY
01 == O_WRONLY
10 == O_RDWR

Access mode can’t be changed after file is opened
Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-38 §2.5

Retrieving and modifying file status flags

Retrieving file status flags
flags = fcntl(fd , F_GETFL);
if (flags & O_NONBLOCK)

printf (" Nonblocking I/O is in effect \n");

Setting a file status flag
flags = fcntl(fd , F_GETFL); /* Retrieve flags */
flags |= O_APPEND ; /* Set " append " bit */
fcntl(fd , F_SETFL , flags); /* Modify flags */

� Not thread-safe...
(But in many cases, flags can be set when FD is created, e.g.,
by open())

Clearing a file status flag
flags = fcntl(fd , F_GETFL); /* Retrieve flags */
flags &= ~ O_APPEND ; /* Clear " append " bit */
fcntl(fd , F_SETFL , flags); /* Modify flags */

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-39 §2.5

Exercise

1 Show that duplicate file descriptors share file offset and file status flags
by writing a program ([template: fileio/ex.fd_sharing.c]) that:

Opens an existing file (supplied as argv[1]) and duplicates (dup())
the resulting file descriptor, to create a second file descriptor.
Displays the file offset and the state of the O_APPEND file status
flag via the first file descriptor.

Initially the file offset will be zero, and the O_APPEND flag
will not be set

Changes the file offset (lseek()) and enables (turns on) the
O_APPEND file status flag (fcntl()) via the second file descriptor.
Displays the file offset and the state of the O_APPEND file status
flag via the first file descriptor.

Hints:
Remember to update the Makefile!
while inotifywait -q . ; do echo; echo; make; done

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-40 §2.5

Exercise
2 Read about the KCMP_FILE operation in the kcmp(2) man page.

Extend the program created in the preceding exercise to use this
operation to verify that the two file descriptors refer to the same open
file description (i.e., use kcmp(getpid(), getpid(), KCMP_FILE, fd1,
fd2)). Note: because there is currently no kcmp() wrapper function in
glibc, you will have to write one yourself using syscall(2):
define _GNU_SOURCE
include <unistd .h>
include <sys/ syscall .h>
include <linux/kcmp.h>

static int kcmp(pid_t pid1 , pid_t pid2 , int type ,
unsigned long idx1 , unsigned long idx2)

{
return syscall (SYS_kcmp , pid1 , pid2 , type ,

idx1 , idx2);
}

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-41 §2.5

Outline

2 System Programming Essentials for IPC 2-1
2.1 File I/O overview 2-3
2.2 open(), read(), write(), and close() 2-7
2.3 Relationship between file descriptors and open files 2-21
2.4 Duplicating file descriptors 2-30
2.5 File status flags (and fcntl()) 2-35
2.6 Process credentials 2-42
2.7 Signal dispositions 2-49
2.8 Signal handlers 2-57
2.9 Process lifecycle 2-61
2.10 Creating a new process: fork() 2-64
2.11 Waiting on a child process 2-70
2.12 Executing programs: execve() 2-80
2.13 The /proc filesystem 2-89

Process credentials

Each process has several user IDs (UIDs) and group IDs (GIDs):
Real UID + real GID
Effective UID + effective GID
Saved set-user-ID + saved set-group-ID
Supplementary GIDs
credentials(7) man page

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-43 §2.6

Real UID and GID

Real UID and GID identify who a process belongs to
Login shell sets these from fields 3 and 4 in /etc/passwd
New process inherits copies of its parent’s real IDs

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-44 §2.6

Effective UID and GID

Determine permissions for performing various operations (in
conjunction with supplementary GIDs)
E.g., files have:

1 an associated user and group, and
2 RWX permissions for user/group/other

New process inherits parent’s effective IDs
Effective UID 0 is special: normally has all privileges

AKA root or superuser
Normally, effective IDs have same values as corresponding
real IDs
Can differ when set-user-ID or set-group-ID program is
executed (later...)

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-45 §2.6

Saved set-user-ID and saved set-group-ID

Used in set-UID and set-GID programs
More later...

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-46 §2.6

Supplementary GIDs

Additional groups to which a process belongs
Used in conjunction with effective GID to check group
permissions on files and other objects
Login shell obtains IDs from /etc/group
New process inherits IDs from parent

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-47 §2.6

APIs for retrieving process credentials

getuid(), getgid() : get real IDs
geteuid(), getegid() : get effective IDs
getresuid(&ruid, &euid, &suid),
getresgid(&rgid, &egid, &sgid) : retrieve real, effective and
saved set IDs
getgroups(size, grouplist) : retrieve supplementary GID list

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-48 §2.6

Outline

2 System Programming Essentials for IPC 2-1
2.1 File I/O overview 2-3
2.2 open(), read(), write(), and close() 2-7
2.3 Relationship between file descriptors and open files 2-21
2.4 Duplicating file descriptors 2-30
2.5 File status flags (and fcntl()) 2-35
2.6 Process credentials 2-42
2.7 Signal dispositions 2-49
2.8 Signal handlers 2-57
2.9 Process lifecycle 2-61
2.10 Creating a new process: fork() 2-64
2.11 Waiting on a child process 2-70
2.12 Executing programs: execve() 2-80
2.13 The /proc filesystem 2-89

Signal default actions

When a signal is delivered, a process takes one of these
default actions:

Ignore: signal is discarded by kernel, has no effect on
process
Terminate: process is terminated (“killed”)
Core dump: process produces a core dump and is
terminated

Core dump file can be used to examine state of program
inside a debugger
See also core(5) man page

Stop: execution of process is suspended
Continue: execution of a stopped process is resumed

Default action for each signal is signal-specific

[TLPI §20.2]
Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-50 §2.7

Standard signals and their default actions
Name Description Default
SIGABRT Abort process Core
SIGALRM Real-time timer expiration Term
SIGBUS Memory access error Core
SIGCHLD Child stopped or terminated Ignore
SIGCONT Continue if stopped Cont
SIGFPE Arithmetic exception Core
SIGHUP Hangup Term
SIGILL Illegal Instruction Core
SIGINT Interrupt from keyboard Term
SIGIO I/O Possible Term
SIGKILL Sure kill Term
SIGPIPE Broken pipe Term
SIGPROF Profiling timer expired Term
SIGPWR Power about to fail Term
SIGQUIT Terminal quit Core
SIGSEGV Invalid memory reference Core
SIGSTKFLT Stack fault on coprocessor Term
SIGSTOP Sure stop Stop
SIGSYS Invalid system call Core
SIGTERM Terminate process Term
SIGTRAP Trace/breakpoint trap Core
SIGTSTP Terminal stop Stop
SIGTTIN Terminal input from background Stop
SIGTTOU Terminal output from background Stop
SIGURG Urgent data on socket Ignore
SIGUSR1 User-defined signal 1 Term
SIGUSR2 User-defined signal 2 Term
SIGVTALRM Virtual timer expired Term
SIGWINCH Terminal window size changed Ignore
SIGXCPU CPU time limit exceeded Core
SIGXFSZ File size limit exceeded Core

Signal default actions are:
Term: terminate the process
Core: produce core dump and terminate the process
Ignore: ignore the signal
Stop: stop (suspend) the process
Cont: resume process (if stopped)

SIGKILL and SIGSTOP can’t be caught, blocked, or ignored
TLPI §20.2

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-51 §2.7

Stop and continue signals

Certain signals stop a process, freezing its execution
Examples:

SIGTSTP: “terminal stop” signal, generated by typing
Control-Z
SIGSTOP: “sure stop” signal

SIGCONT causes a stopped process to resume execution
SIGCONT is ignored if process is not stopped

Most common use of these signals is in shell job control

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-52 §2.7

Changing a signal’s disposition

Instead of default, we can change a signal’s disposition to:
Ignore the signal
Handle (“catch”) the signal: execute a user-defined
function upon delivery of the signal
Revert to the default action

Useful if we earlier changed disposition
Can’t change disposition to terminate or core dump

But, a signal handler can emulate these behaviors
Can’t change disposition of SIGKILL or SIGSTOP (EINVAL)

So, they always kill or stop a process

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-53 §2.7

Changing a signal’s disposition: sigaction()

include <signal .h>
int sigaction (int sig ,

const struct sigaction *act ,
struct sigaction * oldact);

sigaction() changes (and/or retrieves) disposition of signal sig
sigaction structure describes a signal’s disposition
act points to structure specifying new disposition for sig

Can be NULL for no change
oldact returns previous disposition for sig

Can be NULL if we don’t care
sigaction(sig, NULL, oldact) returns current
disposition, without changing it

[TLPI §20.13]
Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-54 §2.7

sigaction structure

struct sigaction {
void (* sa_handler)(int);
sigset_t sa_mask ;
int sa_flags ;
void (* sa_restorer)(void);

};

sa_handler specifies disposition of signal:
Address of a signal handler function
SIG_IGN: ignore signal
SIG_DFL: revert to default disposition

sa_mask: additional signals to block during handler
invocation
sa_flags: bit mask of flags affecting invocation of handler
sa_restorer: not for application use

Used internally to implement “signal trampoline”
Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-55 §2.7

Ignoring a signal (signals/ignore_signal.c)

int ignoreSignal (int sig)
{

struct sigaction sa;

sa. sa_handler = SIG_IGN ;
sa. sa_flags = 0;
sigemptyset (&sa. sa_mask);
return sigaction (sig , &sa , NULL);

}

A “library function” that ignores specified signal
Other fields only significant when establishing a signal
handler, but must be properly initialized here

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-56 §2.7

Outline

2 System Programming Essentials for IPC 2-1
2.1 File I/O overview 2-3
2.2 open(), read(), write(), and close() 2-7
2.3 Relationship between file descriptors and open files 2-21
2.4 Duplicating file descriptors 2-30
2.5 File status flags (and fcntl()) 2-35
2.6 Process credentials 2-42
2.7 Signal dispositions 2-49
2.8 Signal handlers 2-57
2.9 Process lifecycle 2-61
2.10 Creating a new process: fork() 2-64
2.11 Waiting on a child process 2-70
2.12 Executing programs: execve() 2-80
2.13 The /proc filesystem 2-89

Signal handlers

Programmer-defined function
Called with one integer argument: number of signal

⇒ handler installed for multiple signals can differentiate...
Returns void
void
myHandler (int sig)
{

/* Actions to be performed when signal
is delivered */

}

[TLPI §20.4]
Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-58 §2.8

Signal handler invocation

Automatically invoked by kernel when signal is delivered:
Can interrupt main program flow at any time
On return, execution continues at point of interruption

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-59 §2.8

Example: signals/ouch_sigaction.c (snippet)

Print “Ouch!” when Control-C is typed at keyboard
1 static void sigHandler (int sig) {
2 printf ("Ouch !\n"); /* UNSAFE */
3 }
4
5 int main(int argc , char *argv []) {
6 struct sigaction sa;
7 sa. sa_flags = 0; /* No flags */
8 sa. sa_handler = sigHandler ; /* Handler function */
9 /* Don ’t block additional signals

10 during invocation of handler */
11 sigemptyset (&sa. sa_mask);
12
13 if (sigaction (SIGINT , &sa , NULL) == -1)
14 errExit (" sigaction ");
15
16 for (;;)
17 pause (); /* Wait for a signal */
18 }

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-60 §2.8

Outline

2 System Programming Essentials for IPC 2-1
2.1 File I/O overview 2-3
2.2 open(), read(), write(), and close() 2-7
2.3 Relationship between file descriptors and open files 2-21
2.4 Duplicating file descriptors 2-30
2.5 File status flags (and fcntl()) 2-35
2.6 Process credentials 2-42
2.7 Signal dispositions 2-49
2.8 Signal handlers 2-57
2.9 Process lifecycle 2-61
2.10 Creating a new process: fork() 2-64
2.11 Waiting on a child process 2-70
2.12 Executing programs: execve() 2-80
2.13 The /proc filesystem 2-89

Creating processes and executing programs

Four key system calls (and their variants):
fork() : create a new (“child”) process
exit() : terminate calling process
wait() : wait for a child process to terminate
execve() : execute a new program in calling process

[TLPI §24.1]
Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-62 §2.9

Using fork(), execve(), wait(), and exit() together

Parent process

running program A

fork()

Parent may perform

other actions here

wait(&wstatus)

Execution of

parent blocks

Child process

running program A

execve(B, ...)

Child process

running program B

exit(status)

Memory of parentcopied to child

Kernel unblocks parent

and delivers SIGCHLD

Child status
passed to parent

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-63 §2.9

Outline

2 System Programming Essentials for IPC 2-1
2.1 File I/O overview 2-3
2.2 open(), read(), write(), and close() 2-7
2.3 Relationship between file descriptors and open files 2-21
2.4 Duplicating file descriptors 2-30
2.5 File status flags (and fcntl()) 2-35
2.6 Process credentials 2-42
2.7 Signal dispositions 2-49
2.8 Signal handlers 2-57
2.9 Process lifecycle 2-61
2.10 Creating a new process: fork() 2-64
2.11 Waiting on a child process 2-70
2.12 Executing programs: execve() 2-80
2.13 The /proc filesystem 2-89

Creating a new process: fork()

include <unistd .h>
pid_t fork(void);

fork() creates a new process (“the child”):
Child is a near exact duplicate of caller (“the parent”)
Notionally, memory of parent is duplicated to create child

In practice, copy-on-write duplication is used
⇒ Only page tables must be duplicated at time of fork()

Two processes share same (read-only) text segment
Two processes have separate copies of stack, data, and heap
segments

⇒ Each process can modify variables without affecting
other process

[TLPI §24.2]
Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-65 §2.10

Return value from fork()

include <unistd .h>
pid_t fork(void);

Both processes continue execution by returning from fork()
fork() returns different values in parent and child:

Parent:
On success: PID of new child (allows parent to track child)
On failure: -1

Child: returns 0
Child can obtain its own PID using getpid()
Child can obtain PID of parent using getppid()

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-66 §2.10

Using fork()

pid_t pid;

pid = fork ();

if (pid == -1) {

/* Handle error */ ;

} else if (pid == 0) {

/* Code executed by child */

} else {

/* Code executed by parent */

}

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-67 §2.10

Exercise

1 Write a program that uses fork() to create a child process
([template: procexec/ex.fork_var_test.c]). After the
fork() call, both the parent and child should display their
PIDs (getpid()). Include code to demonstrate that the child
process created by fork() can modify its copy of a local
variable in main() without affecting the value in the parent’s
copy of the variable.

Note: you may find it useful to use the sleep(3) library
function to delay execution of the parent for a few seconds,
to ensure that the child has a chance to execute before the
parent inspects its copy of the variable.

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-68 §2.10

Exercise
2 The function alarm(secs) establishes a timer that expires

after the specified number of seconds, and notifies the
process by delivery of a SIGALRM signal. Write a program
that performs the following steps in order to determine if a
child process inherits alarm timers from the parent
[template: procexec/ex.inherit_alarm.c]:

Establishes a SIGALRM handler that prints the process’s PID.
Starts an alarm timer that expires after two seconds.
Creates a child process.
Both processes then loop 8 times, displaying the process
PID and sleeping for half a second (use usleep()).

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-69 §2.10

Outline

2 System Programming Essentials for IPC 2-1
2.1 File I/O overview 2-3
2.2 open(), read(), write(), and close() 2-7
2.3 Relationship between file descriptors and open files 2-21
2.4 Duplicating file descriptors 2-30
2.5 File status flags (and fcntl()) 2-35
2.6 Process credentials 2-42
2.7 Signal dispositions 2-49
2.8 Signal handlers 2-57
2.9 Process lifecycle 2-61
2.10 Creating a new process: fork() 2-64
2.11 Waiting on a child process 2-70
2.12 Executing programs: execve() 2-80
2.13 The /proc filesystem 2-89

Waiting for children with waitpid()

include <sys/wait.h>
pid_t waitpid (pid_t pid , int *wstatus , int options);

waitpid() waits for a child process to change state
No child has changed state ⇒ call blocks
Child has already changed state ⇒ call returns immediately

State change is reported in wstatus (if non-NULL)
(details later...)

Return value:
On success: PID of child whose status is being reported
On error, -1

No more children? ⇒ ECHILD

[TLPI §26.1.2]
Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-71 §2.11

Waiting for children with waitpid()

include <sys/wait.h>
pid_t waitpid (pid_t pid , int *wstatus , int options);

pid specifies which child(ren) to wait for:
pid == -1: any child of caller
pid > 0: child whose PID equals pid
pid == 0: any child in same process group as caller
pid < -1: any child in process group whose ID
equals abs(pid)

See credentials(7) and setpgid(2) for info on process groups

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-72 §2.11

Waiting for children with waitpid()

include <sys/wait.h>
pid_t waitpid (pid_t pid , int *wstatus , int options);

By default, waitpid() reports only terminated children
The options bit mask can specify additional state changes to
report:

WUNTRACED: report stopped children
WCONTINUED: report stopped children that have continued

Specifying WNOHANG in options causes nonblocking wait
If no children have changed state, waitpid() returns
immediately, with return value of 0

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-73 §2.11

waitpid() example

Wait for all children to terminate, and report their PIDs:
for (;;) {

childPid = waitpid (-1, NULL , 0);
if (childPid == -1) {

if (errno == ECHILD) {
printf ("No more children !\n");
break;

} else { /* Unexpected error */
errExit ("wait");

}
}

printf (" waitpid () returned PID %ld\n",
(long) childPid);

}

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-74 §2.11

The wait status value

wstatus returned by waitpid() distinguishes 4 types of event:
Child terminated via _exit(), specifying an exit status
Child was killed by a signal
Child was stopped by a signal
Child was continued by a signal

The term wait status encompasses all four cases
The term termination status covers the first two cases

In the shell, termination status of last command is available
via $?

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-75 §2.11

The wait status value

16 lowest bits of wstatus returned by waitpid() encode status in
such a way that the 4 cases can be distinguished:

(Encoding is an implementation detail we don’t really need to care about)

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-76 §2.11

Dissecting the wait status

<sys/wait.h> defines macros for dissecting a wait status
Only one of the headline macros in this list will return true:

1 WIFEXITED(wstatus): true if child exited normally
WEXITSTATUS(wstatus) returns exit status of child

2 WIFSIGNALED(wstatus): true if child was killed by signal
WTERMSIG(wstatus) returns number of killing signal
WCOREDUMP(wstatus) returns true if child dumped core

3 WIFSTOPPED(wstatus): true if child was stopped by signal
WSTOPSIG(wstatus) returns number of stopping signal

4 WIFCONTINUED(wstatus): true if child was resumed by
SIGCONT

The subordinate macros may be used only if the
corresponding headline macro tests true

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-77 §2.11

Example: procexec/print_wait_status.c

Display wait status value in human-readable form
1 void printWaitStatus (const char *msg , int status) {
2 if (msg != NULL)
3 printf ("%s", msg);
4 if (WIFEXITED (status)) {
5 printf ("child exited , status =%d\n",
6 WEXITSTATUS (status));
7 } else if (WIFSIGNALED (status)) {
8 printf ("child killed by signal %d (%s)",
9 WTERMSIG (status),

10 strsignal (WTERMSIG (status)));
11 if (WCOREDUMP (status))
12 printf (" (core dumped)");
13 printf ("\n");
14 } else if (WIFSTOPPED (status)) {
15 printf ("child stopped by signal %d (%s)\n",
16 WSTOPSIG (status),
17 strsignal (WSTOPSIG (status)));
18 } else if (WIFCONTINUED (status))
19 printf ("child continued \n");
20 }

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-78 §2.11

An older wait API: wait()

include <sys/wait.h>
pid_t wait(int * wstatus);

The original “wait” API
Equivalent to: waitpid(-1, &wstatus, 0);
Still commonly used to handle the simple, common case:
wait for any child to terminate

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-79 §2.11

Outline

2 System Programming Essentials for IPC 2-1
2.1 File I/O overview 2-3
2.2 open(), read(), write(), and close() 2-7
2.3 Relationship between file descriptors and open files 2-21
2.4 Duplicating file descriptors 2-30
2.5 File status flags (and fcntl()) 2-35
2.6 Process credentials 2-42
2.7 Signal dispositions 2-49
2.8 Signal handlers 2-57
2.9 Process lifecycle 2-61
2.10 Creating a new process: fork() 2-64
2.11 Waiting on a child process 2-70
2.12 Executing programs: execve() 2-80
2.13 The /proc filesystem 2-89

Executing a new program

execve() loads a new program into caller’s memory
Old program, stack, data, and heap are discarded
After executing run-time start-up code, execution
commences in new program’s main()
Various functions layered on top of execve() :

Provide variations on functionality of execve()
Collectively termed “exec()”

See exec(3) man page

[TLPI §27.1]
Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-81 §2.12

Executing a new program with execve()

include <unistd .h>
int execve (const char *pathname , char *const argv [],

char *const envp []);

execve() loads program at pathname into caller’s memory
pathname is an absolute or relative pathname
argv specifies command-line arguments for new program

Defines argv argument for main() in new program
NULL-terminated array of pointers to strings

argv[0] is command name
Normally same as basename part of pathname
Program can vary its behavior, depending on value of
argv[0]

busybox

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-82 §2.12

Executing a new program with execve()

include <unistd .h>
int execve (const char *pathname , char *const argv [],

char *const envp []);

envp specifies environment list for new program
Defines environ in new program
NULL-terminated array of pointers to strings

Successful execve() does not return
If execve() returns, it failed; no need to check return value:
execve (pathname , argv , envp);
printf (" execve () failed \n");

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-83 §2.12

Example: procexec/exec_status.c

./ exec_status command [args ...]

Create a child process
Child executes command with supplied command-line
arguments
Parent waits for child to exit, and reports wait status

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-84 §2.12

Example: procexec/exec_status.c

1 extern char ** environ ;
2 int main(int argc , char *argv []) {
3 pid_t childPid , wpid;
4 int wstatus ;
5 ...
6 switch (childPid = fork ()) {
7 case -1: errExit ("fork");
8 case 0: /* Child */
9 printf ("PID of child: %ld\n",

10 (long) getpid ());
11 execve (argv [1], &argv [1], environ);
12 errExit (" execve ");
13 default : /* Parent */
14 wpid = waitpid (childPid , &wstatus , 0);
15 if (wpid == -1) errExit (" waitpid ");
16 printf ("Wait returned PID %ld\n",
17 (long) wpid);
18 printWaitStatus (" ", wstatus);
19 }
20 exit(EXIT_SUCCESS);
21 }

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-85 §2.12

Example: procexec/exec_status.c

1 $./ exec_status /bin/date
2 PID of child: 4703
3 Thu Oct 24 13:48:44 NZDT 2013
4 Wait returned PID 4703
5 child exited , status =0
6 $./ exec_status /bin/sleep 60 &
7 [1] 4771
8 PID of child: 4773
9 $ kill 4773

10 Wait returned PID 4773
11 child killed by signal 15 (Terminated)
12 [1]+ Done ./ exec_status /bin/sleep 60

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-86 §2.12

Exercise

1 Write a simple shell program. The program should loop, continuously
reading shell commands from standard input. Each input line consists
of a set of white-space delimited words that are a command and its
arguments. Each command should be executed in a new child process
(fork()) using execve(). The parent process (the “shell”) should wait
on each child and display its wait status (you can use the supplied
printWaitStatus() function).
[template: procexec/ex.simple_shell.c]

Some hints:
The space-delimited words in the input line need to be broken
down into a set of null-terminated strings pointed to by an
argv-style array, and that array must end with a NULL pointer.
The strtok(3) library function simplifies this task. (This task is
already performed by code in the template.)
Because execve() is used, you will need to specify each command
using a (relative or absolute) pathname.

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-87 §2.12

Exercise
2 Write a program ([template: procexec/ex.make_link.c]) that takes

two arguments:
make_link target linkpath

If invoked with the name slink, it creates a symbolic link (symlink())
using these pathnames, otherwise it creates a hard link (link()). After
compiling, create two hard links to the executable, with the names
hlink and slink. Verify that when run with the name hlink, the program
creates hard links, while when run with the name slink, it creates
symbolic links.

Hint:
You will find the basename() and strcmp() functions useful when
inspecting the program name in argv[0].

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-88 §2.12

Outline

2 System Programming Essentials for IPC 2-1
2.1 File I/O overview 2-3
2.2 open(), read(), write(), and close() 2-7
2.3 Relationship between file descriptors and open files 2-21
2.4 Duplicating file descriptors 2-30
2.5 File status flags (and fcntl()) 2-35
2.6 Process credentials 2-42
2.7 Signal dispositions 2-49
2.8 Signal handlers 2-57
2.9 Process lifecycle 2-61
2.10 Creating a new process: fork() 2-64
2.11 Waiting on a child process 2-70
2.12 Executing programs: execve() 2-80
2.13 The /proc filesystem 2-89

The /proc filesystem

Pseudofilesystem that exposes kernel information via
filesystem metaphor

Structured as a set of subdirectories and files
proc(5) man page

Files don’t really exist
Created on-the-fly when pathnames under /proc are
accessed

Many files read-only
Some files are writable ⇒ can update kernel settings

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-90 §2.13

The /proc filesystem: examples

/proc/cmdline: command line used to start kernel
/proc/cpuinfo: info about CPUs on the system
/proc/meminfo: info about memory and memory usage
/proc/modules: info about loaded kernel modules
/proc/sys/fs/: files and subdirectories with
filesystem-related info
/proc/sys/kernel/: files and subdirectories with various
readable/settable kernel parameters
/proc/sys/net/: files and subdirectories with various
readable/settable networking parameters

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-91 §2.13

/proc/PID/ directories

One /proc/PID/ subdirectory for each running process
Subdirectories and files exposing info about process with
corresponding PID
Some files publicly readable, some readable only by process
owner; a few files writable
Examples

cmdline: command line used to start program
cwd: current working directory
environ: environment of process
fd: directory with info about open file descriptors
limits: resource limits
maps: mappings in virtual address space
status: (lots of) info about process

Background topics ©2019, Michael Kerrisk System Programming Essentials for IPC 2-92 §2.13

