
Linux Security and Isolation APIs

User Namespaces and
Capabilities

Michael Kerrisk, man7.org © 2020

mtk@man7.org

February 2020

Outline

9 User Namespaces and Capabilities 9-1
9.1 User namespaces and capabilities 9-3
9.2 What does it mean to be superuser in a namespace? 9-21
9.3 User namespace “set-UID-root” programs 9-31
9.4 Namespaced file capabilities 9-35
9.5 Namespaced file capabilities example 9-43

Outline

9 User Namespaces and Capabilities 9-1
9.1 User namespaces and capabilities 9-3
9.2 What does it mean to be superuser in a namespace? 9-21
9.3 User namespace “set-UID-root” programs 9-31
9.4 Namespaced file capabilities 9-35
9.5 Namespaced file capabilities example 9-43

What are the rules that determine
the capabilities that a process

has in a given user namespace?

Linux Security and Isolation APIs ©2020, Michael Kerrisk User Namespaces and Capabilities 9-4 §9.1

User namespace hierarchies

User NSs exist in a hierarchy
Each user NS has a parent, going back to initial user NS

Parental relationship is established when user NS is created:
clone() : parent of new user NS is NS of caller of clone()
unshare() : parent of new user NS is caller’s previous NS

Parental relationship is significant because it plays a part in
determining capabilities a process has in user NS

Linux Security and Isolation APIs ©2020, Michael Kerrisk User Namespaces and Capabilities 9-5 §9.1

User namespaces and capabilities

Whether a process has an effective capability inside a
“target” user NS depends on several factors:

Whether the capability is present in the process’s effective
set
Which user NS the process is a member of
The process’s effective UID
The effective UID of the process that created the target
user NS
The parental relationship between the process’s user NS
and the target user NS

See also namespaces/ns_capable.c
(A program that encapsulates the rules described next)

Linux Security and Isolation APIs ©2020, Michael Kerrisk User Namespaces and Capabilities 9-6 §9.1

Capability rules for user namespaces

1 A process has a capability in a user NS if:
it is a member of the user NS, and
capability is present in its effective set
Note: this rule doesn’t grant that capability in parent NS

2 A process that has a capability in a user NS has the
capability in all descendant user NSs as well

I.e., members of user NS are not isolated from effects of
privileged process in parent/ancestor user NS

3 (All) processes in parent user NS that have same eUID as
eUID of creator of user NS have all capabilities in the NS

At creation time, kernel records eUID of creator as
“owner” of user NS

Can discover via ioctl(fd, NS_GET_OWNER_UID)
By virtue of previous rule, capabilities also propagate into
all descendant user NSs

Linux Security and Isolation APIs ©2020, Michael Kerrisk User Namespaces and Capabilities 9-7 §9.1

Demonstration of capability rules

Set up following scenario; then both userns_setns_test
processes will try to join Child namespace 1 using setns()

bash

userns_child_exec

bash

bash

userns_setns_test

(parent)

userns_setns_test

(child)

Parent namespace

(initial namespace)

Child namespace 1

Child namespace 2

User

namespace

fork()

clone()

CLONE_NEWUSER

User namespace

parental relationship

Linux Security and Isolation APIs ©2020, Michael Kerrisk User Namespaces and Capabilities 9-8 §9.1

namespaces/userns_setns_test.c

./ userns_setns_test /proc/PID/ns/user

Creates a child in a new user NS
Both processes then call setns() to attempt to join user
namespace identified by argument

setns() requires CAP_SYS_ADMIN capability in target NS

Linux Security and Isolation APIs ©2020, Michael Kerrisk User Namespaces and Capabilities 9-9 §9.1

namespaces/userns_setns_test.c

int main(int argc , char *argv []) {
...
fd = open(argv [1] , O_RDONLY);

child_pid = clone(childFunc , stack + STACK_SIZE ,
CLONE_NEWUSER | SIGCHLD , (void *) fd);

test_setns (" parent : ", fd);
printf ("\n");

waitpid (child_pid , NULL , 0);
exit(EXIT_SUCCESS);

}

Open /proc/PID/ns/user file specified on command line
Create child in new user NS

childFunc() receives file descriptor as argument
Try to join user NS referred to by fd (test_setns())
Wait for child to terminate

Linux Security and Isolation APIs ©2020, Michael Kerrisk User Namespaces and Capabilities 9-10 §9.1

namespaces/userns_setns_test.c

static int childFunc (void *arg) {
long fd = (long) arg;

usleep (100000);
test_setns ("child: ", fd);
return 0;

}

Child sleeps briefly, to allow parent’s output to appear first
Child attempts to join user NS referred to by fd

Linux Security and Isolation APIs ©2020, Michael Kerrisk User Namespaces and Capabilities 9-11 §9.1

namespaces/userns_setns_test.c

static void display_symlink (char *pname , char *link) {
char target [PATH_MAX];
ssize_t s = readlink (link , target , PATH_MAX);
printf ("%s%s ==> %*s\n", pname , link , (int) s, target);

}

static void test_setns (char *pname , int fd) {
display_symlink (pname , "/proc/self/ns/user");
if (setns(fd , CLONE_NEWUSER) == -1)

printf ("%s setns () failed : %s\n", pname ,
strerror (errno));

else {
printf ("%s setns () succeeded \n", pname);
display_symlink (pname , "/proc/self/ns/user");
display_creds_and_caps (pname);

}
}

Fetch and display caller’s user NS symlink
Try to setns() into user NS referred to by fd
On success, display user NS symlink, credentials, capabilities

Linux Security and Isolation APIs ©2020, Michael Kerrisk User Namespaces and Capabilities 9-12 §9.1

namespaces/userns_functions.c

1 static void display_creds_and_caps (char *msg) {
2 cap_t caps;
3 char *s;
4
5 printf ("%seUID = %ld; eGID = %ld; ", msg ,
6 (long) geteuid (), (long) getegid ());
7
8 caps = cap_get_proc ();
9 s = cap_to_text (caps , NULL)

10 printf (" capabilities : %s\n", s);
11
12 cap_free (caps);
13 cap_free (s);
14 }

Display caller’s credentials and capabilities
(Different source file)

Linux Security and Isolation APIs ©2020, Michael Kerrisk User Namespaces and Capabilities 9-13 §9.1

namespaces/userns_setns_test.c

In one terminal window (in initial user NS), we run the following
commands:
$ id -u
1000
$ readlink /proc/$$/ns/user
user :[4026531837]
$ PS1=’sh2# ’ ./ userns_child_exec \

-U -M ’0 1000 1’ -G ’0 1000 1’ bash
sh2# echo $$
30623
sh2# id -u
0
sh2# readlink /proc/$$/ns/user
user :[4026532638]

Show UID and user NS for initial shell
Start a new shell in a new user NS

Show PID of new shell
Show UID and user NS of new shell

Linux Security and Isolation APIs ©2020, Michael Kerrisk User Namespaces and Capabilities 9-14 §9.1

namespaces/userns_setns_test.c

$./ userns_setns_test /proc /30623/ ns/user
parent : readlink ("/proc/self/ns/user") ==>

user :[4026531837]
parent : setns () succeeded
parent : eUID = 0; eGID = 0; capabilities : =ep

child: readlink ("/proc/self/ns/user") ==>
user :[4026532639]

child: setns () failed : Operation not permitted

In a second terminal window, we run our setns() test program:
Results of readlink() calls show:

Parent userns_setns_test process is in initial user NS
Child userns_setns_test is in another user NS

setns() in parent succeeded, and parent gained full
capabilities as it moved into the user NS

Linux Security and Isolation APIs ©2020, Michael Kerrisk User Namespaces and Capabilities 9-15 §9.1

namespaces/userns_setns_test.c

$./ userns_setns_test /proc /30623/ ns/user
parent : readlink ("/proc/self/ns/user") ==>

user :[4026531837]
parent : setns () succeeded
parent : eUID = 0; eGID = 0; capabilities : =ep

child: readlink ("/proc/self/ns/user") ==>
user :[4026532639]

child: setns () failed : Operation not permitted

setns() in child failed:
Rule 3: “processes in parent user NS that have same
eUID as creator of user NS have all capabilities in the NS”
Parent userns_setns_test process was in parent user
NS of target user NS and so had CAP_SYS_ADMIN
Child userns_setns_test process was in sibling user NS
and so had no capabilities in target user NS

Linux Security and Isolation APIs ©2020, Michael Kerrisk User Namespaces and Capabilities 9-16 §9.1

Quiz (who can signal a process in a child user NS?)

Initial user NS

Process B

UID = 1001

Process A

UID = 1000

Process X

UID = 0

Child user NS

creator UID = 1000

uid_map: 5 1000 10

Process C

UID = 5

Process D

UID = 6

User namespace

"Is user NS

parent of"

Sending a signal requires UID match or CAP_KILL capability
Assume A and B have no capabilities in initial user NS
Assume C was first process in child NS and has all capabilities in NS
To which of B, C, D can process A send a signal?
Can process B send a signal to process D?
Can process X send a signal to processes C and D?

Can process C send a signal to A? To B? To D?

Linux Security and Isolation APIs ©2020, Michael Kerrisk User Namespaces and Capabilities 9-17 §9.1

Quiz (who can signal a process in a child user NS?)

Initial user NS

Process B

UID = 1001

Process A

UID = 1000

Process X

UID = 0

Child user NS

creator UID = 1000

uid_map: 5 1000 10

Process C

UID = 5

Process D

UID = 6

User namespace

"Is user NS

parent of"

A can’t signal B, but can signal C (matching credentials) and D
(because A has capabilities in D’s namespace)
B can signal D (matching credentials)
X can signal C and D (because it has capabilities in parent user NS)
C can signal A (credential match), but not B

Linux Security and Isolation APIs ©2020, Michael Kerrisk User Namespaces and Capabilities 9-18 §9.1

Exercises

1 As an unprivileged user, start two sleep processes, one as the
unprivileged user and the other as UID 0:
$ id -u
1000
$ sleep 1000 &
$ sudo sleep 2000

As superuser, create a user namespace with root mappings and run a
shell in that namespace:
$ PS1="ns2# " sudo unshare -U -r bash --norc

Verify that the shell has a full set of capabilities and a UID map
“0 0 1”:
ns2# egrep ’Cap(Prm|Eff)’ /proc/$$/ status
ns2# cat /proc/$$/ uid_map

[Exercises continue on next slide]

Linux Security and Isolation APIs ©2020, Michael Kerrisk User Namespaces and Capabilities 9-19 §9.1

Exercises

From this shell, try to kill each of the sleep processes started above:
ns2# ps -o ’pid uid cmd ’ -C sleep # Discover ’sleep ’ PIDs
...
ns2# kill -9 <PID -1>
ns2# kill -9 <PID -2>

Which of the kill commands succeeds? Why?
2 Write a program to set up two processes in a child user namespace as

in the scenario shown in the previous “Quiz” slide
[template: namespaces/ex.userns_cap_sig_expt.c]

After compiling the program, assign capabilities to the executable
as follows:
sudo setcap cap_setuid , cap_setgid =pe \

<program -file >

While running the program, try sending signals to processes “C”
and “D” from a shell in the initial user namespace, in order to
verify the answers given for the Quiz.

Linux Security and Isolation APIs ©2020, Michael Kerrisk User Namespaces and Capabilities 9-20 §9.1

Outline

9 User Namespaces and Capabilities 9-1
9.1 User namespaces and capabilities 9-3
9.2 What does it mean to be superuser in a namespace? 9-21
9.3 User namespace “set-UID-root” programs 9-31
9.4 Namespaced file capabilities 9-35
9.5 Namespaced file capabilities example 9-43

User namespaces and capabilities

Kernel grants initial process in new user NS a full set of
capabilities
But, those capabilities are available only for operations on
objects governed by the new user NS

Linux Security and Isolation APIs ©2020, Michael Kerrisk User Namespaces and Capabilities 9-22 §9.2

User namespaces and capabilities

Kernel associates each non-user NS instance with a
specific user NS instance

When creating new network NS (for example), kernel
associates user NS of creating process with new network NS

Suppose a process operates on global resources governed by
new NS:

Permission checks are done according to that process’s
capabilities in user NS that kernel recorded for new NS

⇒ User NSs can safely deliver full capabilities inside a NS
without allowing users to damage wider system

(Barring kernel bugs)

Linux Security and Isolation APIs ©2020, Michael Kerrisk User Namespaces and Capabilities 9-23 §9.2

User namespaces and capabilities–an example

Initial user namespace

creator eUID: 0

Initial network

namespace

Child user namespace

creator eUID: 1000

is ow
ned byis

ch
ild

 o
f

Initial UTS

namespace

is owned by

Second UTS

namespace

is owned by

Process X

eUID inside NS: 0

eUID in outer NS: 1000

capabilities: =ep

ismember of
is

member o
f

is member of

Example scenario; X was created with: unshare -Ur -u <prog>
X is in a new user NS, created with root mappings
X is in a new UTS NS, which is owned by new user NS
X is in initial instance of all other NS types (e.g., network NS)

Linux Security and Isolation APIs ©2020, Michael Kerrisk User Namespaces and Capabilities 9-24 §9.2

User namespaces and capabilities–an example

Initial user namespace

creator eUID: 0

Initial network

namespace

Child user namespace

creator eUID: 1000

is ow
ned byis

ch
ild

 o
f

Initial UTS

namespace

is owned by

Second UTS

namespace

is owned by

Process X

eUID inside NS: 0

eUID in outer NS: 1000

capabilities: =ep

ismember of
is

member o
f

is member of

Suppose X tries to change host name (CAP_SYS_ADMIN)

X is in second UTS NS
Permissions checked according to X’s capabilities in user NS that owns
that UTS NS ⇒ succeeds (X has capabilities in user NS)

Linux Security and Isolation APIs ©2020, Michael Kerrisk User Namespaces and Capabilities 9-25 §9.2

User namespaces and capabilities–an example

Initial user namespace

creator eUID: 0

Initial network

namespace

Child user namespace

creator eUID: 1000

is ow
ned byis

ch
ild

 o
f

Initial UTS

namespace

is owned by

Second UTS

namespace

is owned by

Process X

eUID inside NS: 0

eUID in outer NS: 1000

capabilities: =ep

ismember of
is

member o
f

is member of

Suppose X tries to bind to reserved socket port (CAP_NET_BIND_SERVICE)

X is in initial network NS
Permissions checked according to X’s capabilities in user NS that owns
network NS ⇒ attempt fails (no capabilities in initial user NS)

Linux Security and Isolation APIs ©2020, Michael Kerrisk User Namespaces and Capabilities 9-26 §9.2

Discovering namespace relationships

Recall that there are various ioctl() operations that can be
used to discover namespace relationships and other info

NS_GET_USERNS: get user NS that owns a nonuser NS
NS_GET_PARENT: get parent NS (for PID and user NSs)
NS_GET_OWNER_UID: get UID of creator of a user NS
NS_GET_NSTYPE: get NS type (CLONE_NEW*)
Details in ioctl_ns(2)

These operations can be used to build visualization tools for
namespaces and their relationships

An example: namespaces/namespaces_of.go
Scans /proc/PID/ns/* symlinks and uses above ioctl()
operations to discover namespace relationships

Linux Security and Isolation APIs ©2020, Michael Kerrisk User Namespaces and Capabilities 9-27 §9.2

Discovering namespace relationships

Commands to replicate scenario shown in earlier diagram:
$ echo $$ # PID of a shell in initial user NS
327
$ unshare -Ur -u sh # Create new user and UTS NSs
echo $$ # PID of shell in new NSs
353

We can inspect using namespaces/namespaces_of.go
Shows namespace memberships of specified processes, in
context of user NS hierarchy

Linux Security and Isolation APIs ©2020, Michael Kerrisk User Namespaces and Capabilities 9-28 §9.2

Discovering namespace relationships

Inspect with namespaces/namespaces_of.go program:
$ go run namespaces_of .go --namespaces =net ,uts 327 353
user {3 4026531837} <UID: 0>

[327]
net {3 4026532008}

[327 353]
uts {3 4026531838}

[327]
user {3 4026532760} <UID: 1000 >

[353]
uts {3 4026532761}

[353]

Shells are in same network NS, but different UTS NSs
Second UTS NS is owned by second user NS
NS IDs includes device ID (3) from underlying (hidden) NS
filesystem

As described in ioctl_ns(2), it is the combination of device
ID + inode number that uniquely identifies a NS

Linux Security and Isolation APIs ©2020, Michael Kerrisk User Namespaces and Capabilities 9-29 §9.2

What about resources not governed by namespaces?

Some privileged operations relate to resources/features not
(yet) governed by any namespace

E.g., change system time, load kernel modules, raise
process nice values

Having all capabilities in a (noninitial) user NS doesn’t grant
power to perform operations on features not currently
governed by any NS

E.g., can’t change system time, load/unload kernel
modules, raise process nice values

Linux Security and Isolation APIs ©2020, Michael Kerrisk User Namespaces and Capabilities 9-30 §9.2

