
Linux Security and Isolation APIs Fundamentals

User Namespaces and
Capabilities

Michael Kerrisk, man7.org © 2023

February 2023

mtk@man7.org

Outline Rev: # e2bf8f005a44

10 User Namespaces and Capabilities 10-1
10.1 User namespaces and capabilities 10-3
10.2 What does it mean to be superuser in a namespace? 10-22



Outline

10 User Namespaces and Capabilities 10-1
10.1 User namespaces and capabilities 10-3
10.2 What does it mean to be superuser in a namespace? 10-22

What are the rules that determine
the capabilities that a process

has in a given user namespace?

Security and Isolation APIs Fundamentals ©2023, Michael Kerrisk User Namespaces and Capabilities 10-4 §10.1



User namespace hierarchies

User NSs exist in a hierarchy

Each user NS has a parent, going back to initial user NS

Parental relationship is established when user NS is created:

clone() : parent of new user NS is NS of caller of clone()

unshare() : parent of new user NS is caller’s previous NS

Parental relationship is significant because it plays a part in
determining capabilities a process has in user NS

Security and Isolation APIs Fundamentals ©2023, Michael Kerrisk User Namespaces and Capabilities 10-5 §10.1

User namespaces and capabilities

Whether a process has an effective capability inside a
“target” user NS depends on several factors:

Whether the capability is present in the process’s effective
set

Which user NS the process is a member of

The process’s effective UID

The effective UID of the process that created the target
user NS

The parental relationship between the process’s user NS
and the target user NS

See also namespaces/ns_capable.c

(A program that encapsulates the rules described next)

Security and Isolation APIs Fundamentals ©2023, Michael Kerrisk User Namespaces and Capabilities 10-6 §10.1



Capability rules for user namespaces

1 A process has a capability in a user NS if:

it is a member of the user NS, and

capability is present in its effective set

Note: this rule doesn’t grant that capability in parent NS

2 A process that has a capability in a user NS has the
capability in all descendant user NSs as well

I.e., members of user NS are not isolated from effects of
privileged process in parent/ancestor user NS

3 A process in a parent user NS that has same eUID as
eUID of creator of user NS has all capabilities in the NS

At creation time, kernel records eUID of creator as
“owner” of user NS

Can discover via ioctl(fd, NS_GET_OWNER_UID)

By virtue of previous rule, capabilities also propagate into
all descendant user NSs

Security and Isolation APIs Fundamentals ©2023, Michael Kerrisk User Namespaces and Capabilities 10-7 §10.1

Demonstration of capability rules

Set up following scenario; then both userns_setns_test

processes will try to join Child namespace 1 using setns()

bash

userns_child_exec

bash

bash

userns_setns_test

(parent)

userns_setns_test

(child)

Parent namespace

(initial namespace)

Child namespace 1

Child namespace 2

User

namespace

fork()

clone()

CLONE_NEWUSER

User namespace

parental relationship

Security and Isolation APIs Fundamentals ©2023, Michael Kerrisk User Namespaces and Capabilities 10-8 §10.1



namespaces/userns_setns_test.c

./userns_setns_test /proc/PID/ns/user

Creates a child in a new user NS

Both processes then call setns() to attempt to join user NS
identified by argument

setns() requires CAP_SYS_ADMIN capability in target NS

Security and Isolation APIs Fundamentals ©2023, Michael Kerrisk User Namespaces and Capabilities 10-9 §10.1

namespaces/userns_setns_test.c

int main(int argc, char *argv[]) {
...
long fd = open(argv[1], O_RDONLY);

pid_t child_pid = clone(childFunc, stack + STACK_SIZE,
CLONE_NEWUSER | SIGCHLD, (void *) fd);

test_setns("parent: ", fd);
printf("\n");

waitpid(child_pid, NULL, 0);
exit(EXIT_SUCCESS);

}

Open /proc/PID/ns/user file specified on command line

Create child in new user NS

childFunc() receives file descriptor as argument

Try to join user NS referred to by fd (test_setns())

Wait for child to terminate

Security and Isolation APIs Fundamentals ©2023, Michael Kerrisk User Namespaces and Capabilities 10-10 §10.1



namespaces/userns_setns_test.c

static int childFunc(void *arg) {
long fd = (long) arg;

usleep(100000);
test_setns("child: ", fd);
return 0;

}

Child sleeps briefly, to allow parent’s output to appear first

Child attempts to join user NS referred to by fd

Security and Isolation APIs Fundamentals ©2023, Michael Kerrisk User Namespaces and Capabilities 10-11 §10.1

namespaces/userns_setns_test.c

static void display_symlink(char *pname, char *link) {
char target[PATH_MAX];
ssize_t s = readlink(link, target, PATH_MAX);
printf("%s%s ==> %.*s\n", pname, link, (int) s, target);

}

static void test_setns(char *pname, int fd) {
display_symlink(pname, "/proc/self/ns/user");
display_creds_and_caps(pname);
if (setns(fd, CLONE_NEWUSER) == -1) {

printf("%s setns() failed: %s\n", pname, strerror(errno));
} else {

printf("%s setns() succeeded\n", pname);
display_symlink(pname, "/proc/self/ns/user");
display_creds_and_caps(pname);

}
}

Display caller’s user NS symlink, credentials, and capabilities

Try to setns() into user NS referred to by fd

On success, again display user NS symlink, credentials, and
capabilities

Security and Isolation APIs Fundamentals ©2023, Michael Kerrisk User Namespaces and Capabilities 10-12 §10.1



namespaces/userns_functions.c

1 static void display_creds_and_caps(char *msg) {
2 printf("%seUID = %ld; eGID = %ld; ", msg,
3 (long) geteuid(), (long) getegid());
4
5 cap_t caps = cap_get_proc();
6 char *s = cap_to_text(caps, NULL)
7 printf("capabilities: %s\n", s);
8
9 cap_free(caps);

10 cap_free(s);
11 }

Display caller’s credentials and capabilities

(Different source file)

Security and Isolation APIs Fundamentals ©2023, Michael Kerrisk User Namespaces and Capabilities 10-13 §10.1

namespaces/userns_setns_test.c

On a terminal in initial user NS, we run the following commands:

$ id -u
1000
$ readlink /proc/$$/ns/user
user:[4026531837]
$ PS1='sh2# ' ./userns_child_exec \

-U -M '0 1000 1' -G '0 1000 1' bash
sh2# echo $$
30623
sh2# id -u
0
sh2# readlink /proc/$$/ns/user
user:[4026532638]

Show UID and user NS for initial shell

Start a new shell in a new user NS

Show PID of new shell

Show UID and user NS of new shell

Security and Isolation APIs Fundamentals ©2023, Michael Kerrisk User Namespaces and Capabilities 10-14 §10.1



namespaces/userns_setns_test.c

$ ./userns_setns_test /proc/30623/ns/user
parent: readlink("/proc/self/ns/user") ==> user:[4026531837]
parent: eUID = 1000; eGID = 1000; capabilities: =
parent: setns() succeeded
parent: eUID = 0; eGID = 0; capabilities: =ep

child: readlink("/proc/self/ns/user") ==> user:[4026532639]
child: eUID = 65534; eGID = 65534; capabilities: =ep
child: setns() failed: Operation not permitted

In a second terminal window, we run our setns() test program:

Results of readlink() calls show:

Parent userns_setns_test process is in initial user NS

Child userns_setns_test is in another user NS

setns() in parent succeeded, and parent gained full
capabilities as it moved into the user NS

setns() in child fails; child has no capabilities in target NS

Security and Isolation APIs Fundamentals ©2023, Michael Kerrisk User Namespaces and Capabilities 10-15 §10.1

namespaces/userns_setns_test.c

$ ./userns_setns_test /proc/30623/ns/user
parent: readlink("/proc/self/ns/user") ==>

user:[4026531837]
parent: setns() succeeded
parent: eUID = 0; eGID = 0; capabilities: =ep

child: readlink("/proc/self/ns/user") ==>
user:[4026532639]

child: setns() failed: Operation not permitted

setns() in child failed:

Rule 3: “processes in parent user NS that have same
eUID as creator of user NS have all capabilities in the NS”

Parent userns_setns_test process was in parent user
NS of target user NS and so had CAP_SYS_ADMIN

Child userns_setns_test process was in sibling user NS
and so had no capabilities in target user NS

Security and Isolation APIs Fundamentals ©2023, Michael Kerrisk User Namespaces and Capabilities 10-16 §10.1



Quiz (who can signal a process in a child user NS?)

Initial user NS

Process B

UID = 1001, caps: =

Process A

UID = 1000, caps: =

Process X

UID = 0, caps: =ep

Child user NS

creator UID = 1000

uid_map: 5 1000 10

Process C

UID = 5, caps: =ep

Process D

UID = 6, caps: =

User namespace

"Is user NS

parent of"

Child user NS was created by a process with UID 1000

That process (which presumably was not A) had capabilities that
allowed it to create a user NS with UID map with length > 1

Process X has all capabilities in initial user NS

Assume process A and process B have no capabilities in initial user NS

Assume C was first process in child NS and has all capabilities in NS

Process D has no capabilities

Security and Isolation APIs Fundamentals ©2023, Michael Kerrisk User Namespaces and Capabilities 10-17 §10.1

Quiz (who can signal a process in a child user NS?)

Initial user NS

Process B

UID = 1001, caps: =

Process A

UID = 1000, caps: =

Process X

UID = 0, caps: =ep

Child user NS

creator UID = 1000

uid_map: 5 1000 10

Process C

UID = 5, caps: =ep

Process D

UID = 6, caps: =

User namespace

"Is user NS

parent of"

Sending a signal requires UID match or CAP_KILL capability

To which of B, C, D can process A send a signal?

Can B send a signal to D? Can D send a signal to B?

Can process X send a signal to processes C and D?

Can process C send a signal to A? To B?

Can C send a signal to D?

Security and Isolation APIs Fundamentals ©2023, Michael Kerrisk User Namespaces and Capabilities 10-18 §10.1



Quiz (who can signal a process in a child user NS?)

Initial user NS

Process B

UID = 1001, caps: =

Process A

UID = 1000, caps: =

Process X

UID = 0, caps: =ep

Child user NS

creator UID = 1000

uid_map: 5 1000 10

Process C

UID = 5, caps: =ep

Process D

UID = 6, caps: =

User namespace

"Is user NS

parent of"

A can’t signal B, but can signal C (matching credentials) and D
(because A has capabilities in D’s NS)

B can signal D (matching credentials); likewise, D can signal B

X can signal C and D (because it has capabilities in parent user NS)

C can signal A (credential match), but not B

C can signal D, because it has capabilities in its NS

Security and Isolation APIs Fundamentals ©2023, Michael Kerrisk User Namespaces and Capabilities 10-19 §10.1

Exercises

1 As an unprivileged user, start two sleep processes, one as the
unprivileged user and the other as UID 0:

$ id -u
1000
$ sleep 1000 &
$ sudo sleep 2000

As superuser, create a user namespace with root mappings and run a
shell in that namespace:

$ SUDO_PS1="ns2# " sudo unshare -U -r bash --norc

Setting the SUDO_PS1 environment variable causes sudo(8) to set
the PS1 environment variable for the command that it executes.
(PS1 defines the prompt displayed by the shell.) The bash --norc
option prevents the execution of shell start-up scripts that might
change PS1.

[Exercises continue on next slide]

Security and Isolation APIs Fundamentals ©2023, Michael Kerrisk User Namespaces and Capabilities 10-20 §10.1



Exercises

Verify that the shell has a full set of capabilities and a UID map
“0 0 1”:

ns2# egrep 'Cap(Prm|Eff)' /proc/$$/status
ns2# cat /proc/$$/uid_map

From this shell, try to kill each of the sleep processes started above:

ns2# ps -o 'pid uid cmd' -C sleep # Discover 'sleep' PIDs
...
ns2# kill -9 <PID-1>
ns2# kill -9 <PID-2>

Which of the kill commands succeeds? Why?

Security and Isolation APIs Fundamentals ©2023, Michael Kerrisk User Namespaces and Capabilities 10-21 §10.1


